
Lectures 1-2: 

Basically just a review of A level further maths + Level 6 technical results 

Lecture 3: 

The entire lecture was just a review of stuff we’ve already met at A level, as well as the lecturer doing 
an unjustified limit that isn’t allowed (although the thing he “proved” using this unjustified limit is 
something we have proved properly in the A level documents). Remember, limits and big O do not 
commute, even if the lecturer implied they do. 

 

Lecture 4: 

We can have functions of multiple variables, like 𝑓:ℝ𝑚 → ℝ𝑛. As an example, suppose 𝑧 = 𝑥2 + 𝑦3, 
then we can sketch this using a contour plot, kind of like elevation maps, where we show lines on the 
x,y-plane corresponding to when 𝑥2 + 𝑦3 is constant. Here is that example: 

 

However, if I imagine this as a 3d graph of a surface with height equal to 𝑥2 + 𝑦3, then if I pick a point 
on this graph and try to find the slope, I have a problem that the slope depends on the direction. 

Therefore I write 𝜕𝑧
𝜕𝑥

 for the slope as I move in just the x direction and hold y constant. This is called a 

partial derivative. In this example, that is 2x, because we differentiate 𝑥2 + 𝑦3 and the 𝑦3 vanishes 
since it is a constant. We put a little thingy in the corner like this to show what’s being held constant, 
as shown below.  



∂𝑧

∂𝑥
|
𝑦

 

We do need to be careful about showing what is constant in some cases, as for example if f is a 

function of x, y and z, then 𝜕𝑓
𝜕𝑥
|
𝑦

 does not always equal 𝜕𝑓
𝜕𝑥
|
𝑧

. For example, in the surface                           

𝑥2 + 𝑦3 + 𝑧4 = 1, then 𝜕𝑓
𝜕𝑥
|
𝑦
=

𝑑

𝑑𝑥
(𝑥2 + 𝑦3 + 𝑧4) = 2𝑥 + 4𝑧3

𝑑𝑧

𝑑𝑥
  since y is constant, however             

𝜕𝑓

𝜕𝑥
|
𝑧
= 2𝑥 + 3𝑦2

𝑑𝑦

𝑑𝑥
. 

Formally, for example, if z is a function of x and y, then 

𝜕𝑧

𝜕𝑥
|
𝑦

 

Is defined as lim
ℎ→0

𝑧(𝑥+ℎ,𝑦)−𝑧(𝑥,𝑦)

ℎ
. 

Example: 

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦3 + 𝑒𝑥𝑦
2

. As a shorthand for the partial derivative with respect to x we often instead 

write 𝑓𝑥. Since y is treated as constant here, we get that 𝑓𝑥 = 2𝑥 + 𝑦2𝑒𝑥𝑦
2

, and 𝑓𝑦 = 3𝑦2 + 2𝑥𝑦𝑒𝑥𝑦
2

. 

We can compute second partial derivatvies: 𝑓𝑥𝑦 = 2𝑦𝑒𝑥𝑦
2
+ 2𝑥𝑦3𝑒𝑥𝑦

2
, 𝑓𝑥𝑥 = 2 + 𝑦4𝑒𝑥𝑦

2
, and also 

𝑓𝑦𝑥 = 2𝑦𝑒
𝑥𝑦2 + 2𝑥𝑦3𝑒𝑥𝑦

2
. Notice that 𝑓𝑥𝑦 = 𝑓𝑦𝑥  in this case. It turns out this is not a coincidence. We 

will now prove that this is intuitive, and always true whenever 𝑓𝑥𝑦 and 𝑓𝑦𝑥 are continuous, and we will 
also prove a version of the chain rule for multivariable functions. First, we will need to interpret partial 
derivatvies as entries of a matrix. 

Some precise definitions we need: 

Let f be a function from ℝ𝑚 to ℝ𝑛. 

Then the directional derivative of f at a point a is the slope of f as you move along a vector, which, for a 

vector u, can be written as 𝐷𝑢𝑓(𝑎) = lim
𝑡→0

𝑓(𝑎+𝑡𝑢)−𝑓(𝑎)

𝑡
 whenever this limit exists. This is equal to 

𝑑

𝑑𝑡
𝑓(𝑎 + 𝑡𝑢) when t=0. When u is a basis vector, like the x axis or the y axis, this is when we get a 

partial derivative. 

We will define the “derivative” of f. Here, h is an m-dimensional vector and f spits out n dimensional 
vectors. Like in the real number case, we say f is differentiable if there is some A such that 

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝐴ℎ + 𝑜(ℎ) 

This means that A is an n*m dimensional matrix as it is a linear map from m dimensions to n 
dimensions. Intuitively this means we can find an approximation of f near a that resembles a line or a 
plane or whatever whenever f is differentiable. 

We now call A Df. From now on you can think of Df(x) as Df times x in the matrix multiplication sense, 
since matrix multiplication is really function composition. We have, for a vector u in a fixed direction, 

lim
𝑡→0

𝑓(𝑎+𝑡𝑢)−𝑓(𝑎)−𝐷𝑓(𝑎)(𝑡𝑢)

|𝑡𝑢|
= 0. This is equivalent to saying lim

𝑡→0

𝑓(𝑎+𝑡𝑢)−𝑓(𝑎)−𝑡𝐷𝑓(𝑎)(𝑢)

|𝑡||𝑢|
= 0, thus if u is a 

basis vector, this is equivalent to saying that 𝐷𝑓(𝑎)(𝑢) is the partial derivative of f with respect to u. 



This is because In this case |u|=1 so we just need lim
𝑡→0

𝑓(𝑎+𝑡𝑢)−𝑓(𝑎)−𝑡𝐷𝑓(𝑎)(𝑢)

𝑡
= 0 so 𝐷𝑓(𝑎)𝑢 =

lim
𝑡→0

𝑓(𝑎+𝑡𝑢)−𝑓(𝑎)

𝑡
 which is clearly the partial derivative. But when we multiply a matrix by a basis vector, 

we essentially are filtering for a specific column, so the resulting vector, which is the partial 
derivatives of the components of the output vector of f, is part of the matrix D. This means that D is a 
matrix pf partial derivatives, which is really nice. 

Theorem 1: If all the partial derivatives of f are continuous in a neighbourhood around a then f is 
differentiable at a in the sense above. 

Proof of lemma (screenshots from some other cambridge notes): For each n-dimensional vector h we 
have the following: 

 

And we write: 

 where the e’s are basis vectors (like (1,0,0), etc). 

Then we can use the method of differences: 

𝑓(𝑎 + ℎ) − 𝑓(𝑎) =∑(𝑓(𝑎 + ℎ(𝑗)) − 𝑓(𝑎 + ℎ(𝑗−1)))

𝑛

𝑗=1

 

=∑(𝑓(𝑎 + ℎ(𝑗−1) + ℎ𝑗𝑒𝑗) − 𝑓(𝑎 + ℎ
(𝑗−1)))

𝑛

𝑗=1

 

But now, the mean value theorem from single-variable valvulus allows us to write 

𝑓(𝑎 + ℎ) − 𝑓(𝑎) =∑ℎ𝑗 (
𝛿

𝛿𝑒𝑗
𝑓(𝑎 + ℎ(𝑗−1) + 𝑡𝑗ℎ𝑗𝑒𝑗))

𝑛

𝑗=1

 

For some 𝑡𝑗  between 0 and 1 that depends on j. 

𝑓(𝑎 + ℎ) − 𝑓(𝑎) =∑ℎ𝑗 (
𝛿

𝛿𝑒𝑗
𝑓(𝑎 + ℎ(𝑗−1) + 𝑡𝑗ℎ𝑗𝑒𝑗))

𝑛

𝑗=1

 

=∑ℎ𝑗
𝛿

𝛿𝑒𝑗
𝑓(𝑎)

𝑛

𝑗=1

+∑ℎ𝑗 ((
𝛿

𝛿𝑒𝑗
𝑓(𝑎 + ℎ(𝑗−1) + 𝑡𝑗ℎ𝑗𝑒𝑗)) − (

𝛿

𝛿𝑒𝑗
𝑓(𝑎)))

𝑛

𝑗=1

 

But the partial derivatives are continuous at a so the second term is thus o(h) as                              

(
𝛿

𝛿𝑒𝑗
𝑓(𝑎 + ℎ(𝑗−1) + 𝑡𝑗ℎ𝑗𝑒𝑗)) − (

𝛿

𝛿𝑒𝑗
𝑓(𝑎)) approaches 0 by continuity so when multiplied by h it is o(h). 

Thus 𝑓𝑖(𝑎 + ℎ) − 𝑓𝑖(𝑎) , meaning that 𝐷𝑓(𝑎) = ∑ 𝛿

𝛿𝑒𝑗
𝑓(𝑎)𝑛

𝑗=1 , essentially the matrix of partial 

derivatives. 

Theorem 2: 𝛿
2𝑓

𝛿𝑥𝛿𝑦
=

𝛿2𝑓

𝛿𝑦𝛿𝑥
 if both of these partial derivatives are continuous at a. 



We will prove this. However, this is somewhat obvious, in the sense that, for example, if I move north a 
bit and measure the change in height, then go back to where I started and move east a bit and to that 
again, I may measure a slightly different change in height. If I do what I described in the last sentence 
but with the words “north” and “east” swapped around, the difference of the height differences will be 
the same, it will always equal the sum of two of the diagonal corner heights minus the height of the 
other two diagonal corners. Stare at this until it makes sense to you so you have an intuition of what is 
really going on. 

Proof (screenshots from cambridge notes): Let’s assume f is going to ℝ1, since it is only necessary to 
show that this is true for each component of any arbitrary f. 

 

We have 𝑔𝑖𝑗(𝑡) = 𝜙′(𝑠) = 𝑡 ((
𝛿

𝛿𝑒𝑖
𝑓(𝑎 + 𝑠𝑡𝑒𝑖 + 𝑡𝑒𝑗)) − (

𝛿

𝛿𝑒𝑖
𝑓(𝑎 + 𝑠𝑡𝑒𝑖))) 

= 𝑡 (
𝛿

𝛿𝑒𝑖
(𝑓(𝑎 + 𝑠𝑡𝑒𝑖 + 𝑡𝑒𝑗) − 𝑓(𝑎 + 𝑠𝑡𝑒𝑖))) for some s between 0 and 1 because of the single variable 

mean value theorem. Applying the mean value theorem to 𝑓(𝑎 + 𝑠𝑡𝑒𝑖 + 𝑘𝑡𝑒𝑗) means there is a k 

between 0 and 1 such that 𝑔𝑖𝑗(𝑡) = 𝑡2
𝛿2

𝛿𝑒𝑗𝛿𝑒𝑖
𝑓(𝑎 + 𝑠𝑡𝑒𝑖 + 𝑘𝑡𝑒𝑗) and we can do the same for 𝑔𝑗𝑖, which 

is in fact equal to 𝑔𝑖𝑗 by definition, to get that 𝑔𝑗𝑖(𝑡) = 𝑡2
𝛿2

𝛿𝑒𝑖𝛿𝑒𝑗
𝑓(𝑎 + 𝑠̃𝑡𝑒𝑖 + 𝑘̃𝑡𝑒𝑗), so since they are 

equal we have 𝑡2 𝛿2

𝛿𝑒𝑖𝛿𝑒𝑗
𝑓(𝑎 + 𝑠̃𝑡𝑒𝑖 + 𝑘̃𝑡𝑒𝑗) = 𝑡

2 𝛿2

𝛿𝑒𝑗𝛿𝑒𝑖
𝑓(𝑎 + 𝑠𝑡𝑒𝑖 + 𝑘𝑡𝑒𝑗) . We are interested in the limit 

of this as t goes to 0, and by continuity, these both converge to 𝛿
2𝑓

𝛿𝑦𝛿𝑥
(𝑎), which thus must equal 

𝛿2𝑓

𝛿𝑥𝛿𝑦
(𝑎). 

Theorem 3: This is the multivariate chain rule. Although we will provide a proof, it is far more 
important that I am providing an explanation of what the chain rule actually says. We will prove it and 
then do examples to show why some of the expressions that use the chain rule are the same as the 
chain rule which we will prove here in the matrix sense. The chain rule says 

𝐷(𝑔 ∘ 𝑓)(𝑎) = 𝐷𝑔(𝑓(𝑎))𝐷𝑓(𝑎) 

From the definition of the derivatives, we have 

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝐷𝑓(ℎ) + 𝑜(ℎ) 

and 

𝑔(𝑓(𝑎) + 𝑘) = 𝑔(𝑓(𝑎)) + 𝐷𝑔(𝑓(𝑘)) + 𝑜(𝑘) 

Therefore 



𝑔(𝑓(𝑎 + ℎ)) = 𝑔(𝑓(𝑎) + 𝐷𝑓(ℎ) + 𝑜(ℎ)). Let 𝑘 = 𝐷𝑓(ℎ) + 𝑜(ℎ), then we have 

𝑔(𝑓(𝑎 + ℎ)) = 𝑔(𝑓(𝑎)) + 𝐷𝑔(𝑓(𝐷𝑓(ℎ) + 𝑜(ℎ))) + 𝑜(𝐷𝑓(ℎ) + 𝑜(ℎ)) 

So 

𝑔(𝑓(𝑎 + ℎ)) = 𝑔(𝑓(𝑎)) + 𝐷𝑔 (𝑓(𝐷𝑓(ℎ))) + 𝐷𝑔(𝑓(𝑜(ℎ))) + 𝑜(𝐷𝑓(ℎ) + 𝑜(ℎ)) 

Since derivatives are additive. 

Now we will define the operator norm. For a matrix B, let |B| be the largest possible magnitude of a 
vector of magnitude 1 after being multiplied by B. This is clearly finite, then multiplying everything by 
the right constants gives that for a vector B, |𝐵𝑣| ≤ |𝐵||𝑣|. Therefore 𝐷𝑔(𝑓(𝑜(ℎ))) is o(h) since D(g∘f) 
is a matrix. Also, by the triangle inequality, |Ah+o(h)| ≤ |A||h|+|o(h)| ≤ (|A|+1)|h| since an o(h) thing is 
less than 1 times h when h is sufficiently small by definition. Therefore, since Ah+o(h) is bounded by a 
constant times h, o(Ah+o(h)) is o(h) as well. The fact that we now have 

(𝑓(𝑎 + ℎ)) = 𝑔(𝑓(𝑎)) + 𝐷𝑔 (𝑓(𝐷𝑓(ℎ))) + 𝑜(ℎ) 

Completes the proof of the chain rule. 

Side note: Operator norm notation is annoying because we use absolute value signs to denote both it 
and the determinant so we have to guess what we want based on context. For both cases, we 
sometimes use double bars like ||A|| or single bars like |A|. 

EXAMPLE: 

Let’s do an example where we apply the chain rule as given above. Let z be a function of x and y which 
are both functions of t. Let 𝑧 = 𝑥𝑦 where 𝑥 = 𝑒𝑡  and 𝑦 = sin (𝑡) Then we can consider a function 

𝑓(𝑡) = (𝑥 = 𝑒𝑡, 𝑦 = sin(𝑡)) and 𝑔(𝑥, 𝑦) = 𝑥𝑦, then 𝑑𝑧
𝑑𝑡
=
𝑑(𝑔(𝑓(𝑡)))

𝑑𝑡
. This is a total derivative and equal to 

the matrix derivative since z(t) is a function from 1 variable to 1 variable. 

Since f is a function from 1 variable to 2 variables, the matrix Df in question will be 2x1. The matrix will 
then look as follows: 

𝐷𝑓 = (

𝑑𝑥

𝑑𝑡
𝑑𝑦

𝑑𝑡

) = (
𝑒𝑡

𝑐𝑜𝑠(𝑡)
) 

 

Similarly, Dg will be 1x2 because g is a function from 2 variables to 1 variable. 

𝐷𝑔 = (
𝛿𝑧

𝛿𝑥

𝛿𝑧

𝛿𝑦
) = (𝑦 𝑥) 

𝐷(𝑔 ∘ 𝑓) = (sin(𝑡) 𝑒𝑡) 

𝐷(𝑔 ∘ 𝑓)𝐷𝑓 = (sin(𝑡) 𝑒𝑡) (
𝑒𝑡

cos (𝑡)
) 

𝐷(𝑔 ∘ 𝑓)𝐷𝑓 = sin(𝑡) 𝑒𝑡 + cos(𝑡)𝑒𝑡 



And, therefore, since 𝑑𝑧
𝑑𝑡
= 𝐷(𝑔 ∘ 𝑓)𝐷𝑓 = (

𝛿𝑧

𝛿𝑥

𝛿𝑧

𝛿𝑦
)(

𝑑𝑥

𝑑𝑡
𝑑𝑦

𝑑𝑡

), so 𝑑𝑧
𝑑𝑡
=
𝛿𝑧

𝛿𝑥

𝑑𝑥

𝑑𝑡
+
𝛿𝑧

𝛿𝑦

𝑑𝑦

𝑑𝑡
. This is why that comes 

from the chain rule. 

Notice, however, that the statement 𝑑𝑧
𝑑𝑡
=
𝛿𝑧

𝛿𝑥

𝑑𝑥

𝑑𝑡
+
𝛿𝑧

𝛿𝑦

𝑑𝑦

𝑑𝑡
 is intuitively obvious: Since dt is not 0 and only 

approaching 0, we can write 𝑑𝑧 = 𝛿𝑧

𝛿𝑥
𝑑𝑥 +

𝛿𝑧

𝛿𝑦
𝑑𝑦, which basically says that z changes by the amount z 

changes as x changes times the amount that x changes plus the amount that z changes as y changes 
times the amount that y changes. Stare at this until you see why it makes the above formula intuitively 

obvious. If z is a function of y which is a function of x, then 𝑑𝑧
𝑑𝑥
=
𝛿𝑧

𝛿𝑥

𝑑𝑥

𝑑𝑥
+
𝛿𝑧

𝛿𝑦

𝑑𝑦

𝑑𝑥
=
𝛿𝑧

𝛿𝑥
+
𝛿𝑧

𝛿𝑦

𝑑𝑦

𝑑𝑥
. 

Notice that the columns correspond to the variable we are differentiating with respect to, and the 
rows correspond to the variable we are differentiating. Note that the matrices are always compatible 
because if f is a function from a variables to b variables and g is from c variables to d variables, then 
f∘g is only valid if b=c, which exactly corresponds with the condition for matrix multiplication to be 
compatible. So done. 

We can also take the chain rule for a function f(x,y) and integrate both sides as follows. 

∫ 𝑑𝑓 = ∫
𝛿𝑓

𝛿𝑥
𝑑𝑥 + ∫

𝛿𝑓

𝛿𝑦
𝑑𝑦

(𝑥2,𝑦2)

(𝑥1,𝑦1)

(𝑥2,𝑦2)

(𝑥1,𝑦1)

(𝑥2,𝑦2)

(𝑥1,𝑦1)

 

We are taking the path where we move in the x direction until 𝑥2 and then move in the y direction until 

𝑦2. Therefore ∫
𝛿𝑓

𝛿𝑥
𝑑𝑥 + ∫

𝛿𝑓

𝛿𝑦
𝑑𝑦

(𝑥2,𝑦2)

(𝑥1,𝑦1)

(𝑥2,𝑦2)

(𝑥1,𝑦1)
= ∫

𝜕𝑓

𝜕𝑥
|
𝑦=𝑦1

𝑑𝑥 + ∫
𝜕𝑓

𝜕𝑦
|
𝑥=𝑥2

𝑑𝑦
𝑦2
𝑦1

𝑥2
𝑥1

.  

∫ 𝑑𝑓
(𝑥2,𝑦2)

(𝑥1,𝑦1)
just means adding up the small changes in f as you move along the path. Since the sum of 

these small changes will always be 𝑓(𝑥2, 𝑦2) − 𝑓(𝑥1, 𝑦1), the integral does not depend on the path, 

and we just wrote it as ∫
𝜕𝑓

𝜕𝑥
|
𝑦=𝑦1

𝑑𝑥 + ∫
𝜕𝑓

𝜕𝑦
|
𝑥=𝑥2

𝑑𝑦
𝑦2
𝑦1

𝑥2
𝑥1

 because this reduces it to two integrals of single 

variable functions. 

Lecture 5: 

Here are some examples of using the chain rule. 

Lets say we want to work in polar coordinates and write 𝑓(𝑥, 𝑦) = 𝑓(𝑥(𝑟, 𝜃), 𝑦(𝑟, 𝜃)) where                   
𝑥 = 𝑟𝑐𝑜𝑠(𝜃) and 𝑦 = 𝑟𝑠𝑖𝑛(𝜃). Then we can apply the chain rule as follows: 

𝜕𝑓

𝜕𝜃
|
𝑟
=
𝜕𝑓

𝜕𝑥
|
𝑦

𝜕𝑥

𝜕𝜃
|
𝑟
+
𝜕𝑓

𝜕𝑦
|
𝑥

𝜕𝑦

𝜕𝜃
|
𝑟
=
𝜕𝑓

𝜕𝑦
|
𝑥

𝑟𝑐𝑜𝑠(𝜃) −
𝜕𝑓

𝜕𝑥
|
𝑦
𝑟𝑠𝑖𝑛(𝜃) 

𝜕𝑓

𝜕𝑟
|
𝜃
=
𝜕𝑓

𝜕𝑥
|
𝑦

𝜕𝑥

𝜕𝑟
|
𝜃
+
𝜕𝑓

𝜕𝑦
|
𝑥

𝜕𝑦

𝜕𝑟
|
𝜃
=
𝜕𝑓

𝜕𝑥
|
𝑦
𝑐𝑜𝑠(𝜃) +

𝜕𝑓

𝜕𝑦
|
𝑥

𝑠𝑖 𝑛(𝜃) 

Now let’s consider a surface defined by 𝑓(𝑥, 𝑦, 𝑧) = 𝑐. The chain rule gives 𝜕𝑓
𝜕𝑥
|
𝑧
=
𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑥
+
𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝑥
+
𝜕𝑓

𝜕𝑧

𝜕𝑧

𝜕𝑥
. 

However, z is constant so the last term vanishes, and dx/dx is 1, so 𝜕𝑓
𝜕𝑥
|
𝑧
=
𝜕𝑓

𝜕𝑥
+
𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝑥
. However, on 

paths where z and f are constant, we have 𝑓𝑥 + 𝑓𝑦
𝜕𝑦

𝜕𝑥
= 0. Rearranging gives 𝜕𝑦

𝜕𝑥
|
𝑧
= −

𝑓𝑥|𝑦,𝑧

𝑓𝑦|𝑥,𝑧
, and 



similarly for other partial derivatives. In fact, we can easily show from this that the following product, 
called the cyclical rule, holds: 

𝜕𝑦

𝜕𝑥
|
𝑧

𝜕𝑧

𝜕𝑦
|
𝑥

𝜕𝑥

𝜕𝑧
|
𝑦
= −1. 

In the normal two dimensional case, we had 𝑑𝑦
𝑑𝑥

𝑑𝑥

𝑑𝑦
= 1. This is still true whenever we are holding all but 

two variables constant, however, it is in general wrong to assume that for a function f(x,y,z), 

𝜕𝑓

𝜕𝑥
|
𝑦

𝜕𝑥

𝜕𝑓
|
𝑧
= 1, as this is false in general. 

Also, here is the function 𝑥2 − 𝑦2 = 0. 

 

As you can see, when x=y=0, 𝛿𝑦
𝛿𝑥

 will not exist as the slope in question could be -1 or 1. This will be 

reflected when we try to compute it: if 𝑥2 − 𝑦2 = 𝑓 = 𝑐, then we use 𝜕𝑦
𝜕𝑥
|
𝑧
= −

𝑓𝑥|𝑦,𝑧

𝑓𝑦|𝑥,𝑧
 to get that this is 

𝜕𝑦

𝜕𝑥
|
𝑧
= −

2𝑥

−2𝑦
, which is indeed undefined when y=0. 

I will also show an example of how to find partial derivatives like 𝛿𝑦
𝛿𝑥

 on a surface defined parametrically 

with x, y, and z functions of u and v. 

Here is the first case: 

 

Where in the last step I have reverse engineered 𝑧𝑥 by equating the coefficients in the chain rule, valid 
since the step above must be true even when I fix y. 

If it is parametric in terms of just t, then we usually cannot do something similar: A curve’s trajectory 
might leave the plane where y is constant so we cannot just fix y. The above proof assumes that the 
surface is actually differentiable at the point in question when we fix y. For example, the point (1, 0, 0) 
on the unit sphere is not differentiable with respect to x and with y held constant. This can be seen as 
the unit sphere can be parametrized as 



𝑥 = √1 − 𝑣2 cos(𝑢) , 𝑦 = √1 − 𝑣2 sin(𝑢), 𝑧 = 𝑣. 

Then the denominator of 𝑧𝑥 by the above formula is 

 −√1 − 𝑣2 sin(𝑢) −𝑣

√1−𝑣2
sin(𝑢) −

−𝑣

√1−𝑣2
cos(𝑢)√1 − 𝑣2 cos(𝑢) = 𝑣(sin2(𝑢) + cos2(𝑢)) = 𝑣, but since 

this is at (1, 0, 0), v must be 0 since z=v, so the denominator works out to be 0. 

Similarly, if we were to define a curve parametrically in terms of a single variable, then we could 
achieve that by doing it in terms of u and v but never putting v in any of the equations, but then the 
derivative of x, y, z with respect to v would be 0, so the denominator would also vanish, consistent with 
the intuition before that it is not possible. 

There is one more topic, and that is differentiating under the integral sign. 

If 𝐼(𝑐) = ∫ 𝑓(𝑐, 𝑥)𝑑𝑥
𝑏

𝑎
 then 𝐼′(𝑐) = ∫ 𝑓𝑐(𝑐, 𝑥)𝑑𝑥

𝑏

𝑎
. Intuitively this makes sense: We can swap the 

differentiation and integration order because the sum of the changes is the change of the sums. 
However, we need to justify this. It is true whenever 𝑓(𝑐, 𝑥) and 𝑓𝑐(𝑐, 𝑥) are continuous everywhere in a 
closed rectangle with x going from a to b and c in some neighbour its value. If the integral is improper 
we can just take a limit: If the integral is absolutely convergent then the dominated convergence 
theorem allows us to take this limit when it exists. We proved DCT in the level 6 technical results 
document, and now we will show that this differentiation and integration swap is valid. 

The following screenshots are from wikipedia. 

Now, both of these are true from the fundamental theorem of calculus and the fact that swapping 
integration bounds changes the sign. 

 

Let’s define 

 

Now, f is continuous on a closed rectangle, and therefore by a theorem in the level 6 technical results 
document it is uniformly continuous in that rectangle. Thus, there exists a Δα such that 

  

always, for any arbitrary ε. 

Also, 



 

Which implies that φ is continuous: The output can be made arbitrary close by making the inputs 
sufficiently close. Also, by continuity of 𝑓𝑎, there is a Δα with 

 

As by the mean value theorem the first term of the above screenshot is 𝑓𝑎(𝑥, 𝑎 + 𝑑) with d<Δα, and we 
pick Δα small enough such that the difference is within ε for any d<Δα. Now, this implies that 

  

The reason for the last term is from the ε bound in the screenshot above. As ε gets smaller, Δα 
approaches 0, so we have that 

  

Since R gets small so the two integrals in the screenshot two above that differ by R must approach 
eachother. 

Another theorem says what happens if the integration bounds depend on c: 

If 𝐼(𝑐) = ∫ 𝑓(𝑥, 𝑐)𝑑𝑥
𝑏(𝑐)

𝑎(𝑐)
 then 𝐼′(𝑐) = ∫ 𝑓𝑐(𝑥, 𝑐)𝑑𝑥 + 𝑓(𝑏, 𝑐)

𝑑𝑏

𝑑𝑐
− 𝑓(𝑎, 𝑐)

𝑑𝑎

𝑑𝑐

𝑏(𝑐)

𝑎(𝑐)
. Now we need the same 

continuity conditions as before, and also suppose we have the same continuity conditions in an 
interval around [a,b] since a and b are changing. 

Proof: 

Let 

 

with a and b depending on 𝛼. Then 



 

In the first and last of the integrals above, we can apply the mean value theorem which essentially 

says that ∫ 𝑓(𝑥)𝑑𝑥 = (𝑏 − 𝑎)𝑓(𝜉)
𝑏

𝑎
 with  𝑎 < 𝜉 < 𝑏 (This is just the standard MVT applied to an 

antiderivative of f). This gives 

 

Now, for the same mean value theorem argument as In the above proof, dividing everything by Δα and 
taking a limit does give this for the middle integral: 

 

Since 𝜉1 → 𝑎, and f is continuous, the first term approaches − Δa

Δα
𝑓(𝑎, α + Δα), which approaches 

−
da

dα
𝑓(𝑎, α), by continuity and the definition of the derivative. Similarly for the last term. So done. 

Example: 

Suppose we want to evaluate ∫ 𝑥𝑛𝑒−𝑥𝑑𝑥
∞

0
. This can be done with integration by parts and induction, 

but here is a different method. By a simple substitution, 

∫ 𝑒−𝜆𝑥𝑑𝑥
∞

0
=
1

𝜆
 for 𝜆 > 0. This is continuous with 𝜆 in the vicinity of 1 (which is what we will eventually 

care about), and continuous in x everywhere, and we can just take a limit to infinity. 

Differentiating with respect to 𝜆 n times gives ∫ (−𝑥)𝑛𝑒−𝜆𝑥𝑑𝑥
∞

0
= (−1)𝑛 ∫ 𝑥𝑛𝑒−𝜆𝑥𝑑𝑥

∞

0
. On the other 

hand, by the power rule, differentiating 1
𝜆

 n times gives (𝑛!)(−1)
𝑛

𝜆𝑛+1
. Therefore,                         

(−1)𝑛 ∫ 𝑥𝑛𝑒−𝜆𝑥𝑑𝑥
∞

0
=
(𝑛!)(−1)𝑛

𝜆𝑛+1
. Taking 𝜆 = 1 and cancelling 𝑛! Gives that ∫ 𝑥𝑛𝑒−𝑥𝑑𝑥

∞

0
= 𝑛! 

Lecture 6: 

This lecture was mostly a review from A level of techniques for solving differential equations. However, 
we do have some definitions: 

The order of a differential equation is the highest order derivative that appears, so you may hear about 
“first order” or “second order” differential equations for example. 

An ordinary differential equation is a differential equation with only an independent (usually x or t) 
and a dependent variable (usually y). 



A linear differential equation is a differential equation where all of the terms are y or one of its 
derivatives multiplied by a function of x (assuming y is the dependent variable and x is the 
independent variable). It has constant coefficients if all these “functions of x” are constant values, 
and these can be solved using the auxillary equation, as explained in levels 5 and 6. 

A homogenous differential equation is a differential equation with no terms depending only on x. 

The lecture also reviews some numerical methods that we met in further maths (level 5) for 
approximately solving differential equations. 

We also have some obvious power series facts in which the technical details about convergence were 
justified in previous levels. Suppose 𝑦 = ∑ 𝑎𝑛𝑥

𝑛∞
𝑛=0 , then inside the radius of convergence, 

- 𝑑𝑦

𝑑𝑥
= ∑ 𝑛𝑎𝑛𝑥

𝑛−1∞
𝑛=1  

- 𝑥
𝑑𝑦

𝑑𝑥
= ∑ 𝑛𝑎𝑛𝑥

𝑛∞
𝑛=1  

- 𝑥𝑦 = ∑ 𝑎𝑛𝑥
𝑛+1∞

𝑛=0 = ∑ 𝑎𝑚−1𝑥
𝑚∞

𝑚=1  

Before we solve differential equations, we need to be careful: We should only solve them on a domain 

in which they are defined: For example 𝑑𝑦
𝑑𝑥
=
𝑦

𝑥
 should only be solved on an interval not including x=0 

so that everything is defined, otherwise something like y=|x| satisfies the equation everywhere that the 
stuff is defined. If we add implied constraints like that the solutions have to be infinitely differentiable 
everywhere then we get better behavior. 

Lecture 7: 

In simple cases we can find solutions using a series in terms of 𝑎0. For example, if 5y’-3y=0 then 5xy’-
3xy=0 so 

5∑𝑛𝑎𝑛𝑥
𝑛

∞

𝑛=1

− ∑ 3𝑎𝑚−1𝑥
𝑚

∞

𝑚=1

= 0 

So we can equate coefficients to find 𝑎1, 𝑎2, 𝑎3, … in terms of 𝑎0. 

In fact, we can write a recurrence relation: 5𝑛𝑎𝑛 = 3𝑎𝑛−1 

𝑎𝑛 =
3

5𝑛
𝑎𝑛−1 for all n so we can apply this repeatedly: 

𝑎𝑛 = (
3

5𝑛
) (

3

5(𝑛−1)
) 𝑎𝑛−2 = (

3

5𝑛
) (

3

5(𝑛−1)
) (

3

5(𝑛−2)
) 𝑎𝑛−3 and we can keep going until we get 

𝑎𝑛 =
(
3
5
)
𝑛

𝑎0

𝑛!
 

Which means the power series agrees with the taylor series for 𝑎0𝑒
3𝑥

5 , which we could also derive 
using the integrating factor. 

After this we do more review from A level, such as this cool real world example: 

We have 3 radioactive isotopes: A decays to B which decays to C. 

At time t, the amount of each isotope is a(t), b(t), c(t). 

We have that 



𝑑𝑎

𝑑𝑡
= −𝑘𝑎𝑎 

Because a decays proportionally to how much A is left. 

Therefore 𝑎 = 𝑎0𝑒−𝑘𝑎𝑡 which we know from A level. 

For b, we have to take into account the fact that it is increasing from a’s decay and decreasing from its 
own decay. 

𝑑𝑏

𝑑𝑡
= 𝑘𝑎𝑎 − 𝑘𝑏𝑏 = 𝑘𝑎𝑎0𝑒

−𝑘𝑎𝑡 − 𝑘𝑏𝑏 

This is an equation which we can easily solve using an integrating factor, even though the lecturer 
solves it by guessing for reasons I don’t understand. 

We can eventually get that if 𝑘𝑎 ≠ 𝑘𝑏 then the unique solution for b satisfying b=0 when t=0 is 

−
𝑘𝑎𝑎0

𝑘𝑏−𝑘𝑎
𝑒−𝑘𝑏𝑡 +

𝑘𝑎𝑎0

𝑘𝑏−𝑘𝑎
𝑒−𝑘𝑎𝑡. We can find the solution for c by finding what we would need to add to a 

and b to get 𝑎0 = 𝑎 + 𝑏 + 𝑐. 

Given that this problem came from radioactive decay, it makes sense what the graph of this looks like: 
a decays exponentially, b starts by increasing but itself decays so it peaks at some point then decays, 
and c is what is left so it increases over time. 

 

Red = A, Blue = B, Green = C 

We can use this idea to find how old something is by dating. 

Sometimes boundary/initial conditions may not be about y being a constant at some constant x. For 

example, for the DE 𝑥𝑦′ + (1 − 𝑥)𝑦 = 1, the general solution is 𝑦 = − 1

𝑥
+
𝑐

𝑥
𝑒𝑥, and the boundary 

consition that merely states that y is finite for all x determines that c=1. This is finite by a limit we had 
to solve by elementary means in the level 4 existence of e proof. 

Going back to the radioactivity example in the case 𝑘𝑎 = 𝑘𝑏, solving it using an integrating factor will 
eventually give that 𝑏 = 𝑘𝑎𝑎0𝑡𝑒−𝑘𝑏𝑡 is the solution that satisfies that b=0 when t=0. 

Lecture 8: 

Sometimes equations are separable (meaning you can apply separation of variables from A level, ie it 

can be written as 𝑑𝑦
𝑑𝑥
=
𝑓(𝑥)

𝑔(𝑦)
) even if they don’t look that way. Example: 



(𝑥2𝑦 − 3𝑦)
𝑑𝑦

𝑑𝑥
− 2𝑥𝑦2 = 4𝑥 

𝑦(𝑥2 − 3)
𝑑𝑦

𝑑𝑥
= 2𝑥(2 + 𝑦2) 

𝑦

2 + 𝑦2
𝑑𝑦 =

2𝑥

𝑥2 − 3
𝑑𝑥 

So we can integrate both sides which gives us solutions in terms of logs, we eventually get 

𝑦2 + 2 = 𝐶((𝑥2 − 3)2) 

Definition: 

An ODE of the form 𝑄(𝑥, 𝑦) 𝑑𝑦
𝑑𝑥
+ 𝑃(𝑥, 𝑦) = 0 is exact if there exists an 𝑓(𝑥, 𝑦) with                                     

𝜕𝑓

𝜕𝑥
= 𝑃(𝑥, 𝑦) + 𝑄(𝑥, 𝑦)

𝑑𝑦

𝑑𝑥
 and 𝜕𝑓

𝜕𝑦
= 𝑃(𝑥, 𝑦)

𝑑𝑥

𝑑𝑦
+ 𝑄(𝑥, 𝑦). Both are equivalent to ∫𝑑𝑓 = ∫𝑃𝑑𝑥 + ∫𝑄𝑑𝑦 

by previous definitions. If an ODE is exact then the equation is saying df=0 so f=constant is the general 
solution. We don’t know yet how to determine if an equation is exact but we will talk about how to do 
that and how to apply this. 

If an equation is exact, we can use the multivariate chain rule and equate coefficients to get: 

𝑓𝑥 = 𝑃(𝑥, 𝑦) and 𝑓𝑦 = 𝑄(𝑥, 𝑦). 

If 𝑃𝑦 and 𝑄𝑥 are continuous, then they are equal to eachother, since 𝑓𝑥𝑦 = 𝑓𝑦𝑥 if they are continuous. 
This is a necessary but not sufficient condition for exactness. 

Definition: A domain D is simply connected if it has no holes, ie it is path connected and any closed 
curve in D can be continuously shrunk to a point in D without leaving D. 

Theorem (Poincare lemma): If 𝑃𝑦 = 𝑄𝑥 are continuous in a simply connected open domain, then 
𝑃𝑑𝑥 + 𝑄𝑑𝑦 is an exact differential of a single valued function 𝑓(𝑥, 𝑦). I will give an idea of why it is true 
then give a proof. 

Idea of why the Poincare lemma is true: 

We can try to construct a function f by starting somewhere and filling it in based on the tiny changes in 
x and y. If the domain has holes, it could be that f goes up a spiral staircase and is thus multi-valued 
(kind of like the complex logarithm looping around the point 0 where it is not defined). But, if there are 
no holes, then the integral of df around a loop is 0 since it can be continuously deformed into a point 
where the integral is clearly 0 by simply connectedness. Because the integral of df is 0 f is single-
valued at every point. However, we need to demonstrate that the integral does not change as we 
deform the path – this is not complete and just an intuition. 

Proof of Poincare lemma: 

Consider a rectangle inside a simply connected open domain. Define (going anticlockwise) its bottom 
as   (a, c) to (b, c), its right as (b, c) to (b, d), its top as (b, d) to (a, d) and its left as (a, d) to (a, c). Let’s try 
to integrate 𝑃𝑑𝑥 + 𝑄𝑑𝑦 along those sides of the rectangle. 

What we end up with is 



 

This can be written as 

 

By the fundamental theorem of calculus, we have the following 

 

And therefore we have the following integral, which collapses to zero because 𝑃𝑦 = 𝑄𝑥 

 

Now suppose we have a region that has a closed loop as the boundary and can be tiled by a bunch of 
these rectangles, so a possibly more complicated region but with all right angles and edges aligned to 
the axes. Then what happens is if we integrate along the boundary of this region, we get 0. The proof is 
that we can sum the integrals of the rectangles, which are all 0 from earlier, and what happens is all 
non-boundary edges in the integral vanish since an edge on the right of one rectangle is either part of 
the boundary or is connected to a left edge of another rectangle, and the integral along those opposite 
edges cancel since they are going in the opposite direction. 

Now we will pick points on our path such that we can take those points to be opposite corners of a 
bunch of rectangles, and such that these rectangles are all completely inside our SCD which we will 
call D. This is fine since our path cannot touch the boundary as D is open by assumption. Fix (𝑥0, 𝑦0) in 
our domain D. Then it is inside one of our rectangles, and so is any (𝑥, 𝑦) in D. Define F to be the 
integral of 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦 from (𝑥0, 𝑦0) to (𝑥, 𝑦) by first moving in a straight line from the 
starting point to the boundary of its rectangle, along more of the rectangles, until the rectangle of the 
end point, in a straight line to the end point. Suppose without loss of generality at each rectangle we 
go horizontally and then vertically. This is well defined since if we do it differently, the difference is 0 by 
the rectangular-domain property from earlier. We will show that F makes an exact differential as 
required. 

 



This image shows what I am doing with rectangles: Since the black loop is not on the boundary since 
the domain is open, I just have to make them sufficiently small. 

Lets compute 𝐹𝑥: By continuity of 𝑄𝑥, we may apply differentiation under the integral sign, which by 
the way is called Feynman’s trick. To find 𝐹𝑥, we will call (𝑥1, 𝑦1) the first point we go to in our final 

rectangle, so that 𝐹 = ∫ 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦
(𝑥1,𝑦1)

(𝑥0,𝑦0)
+ ∫ 𝑃(𝑠, 𝑦0)𝑑𝑠

𝑥

𝑥1
+ ∫ 𝑄(𝑥, 𝑡)𝑑𝑡

𝑦

𝑦1
 where the first 

term is on any axis aligned staircase like path. 

𝐹𝑥 = ∫ 𝑃𝑥(𝑠, 𝑦0)𝑑𝑠
𝑥

𝑥1
+ ∫ 𝑄𝑥(𝑥, 𝑡)𝑑𝑡

𝑦

𝑦1
= 𝑃(𝑥, 𝑦0) + ∫ 𝑄𝑥(𝑥, 𝑡)𝑑𝑡

𝑦

𝑦1
 by feynman’s trick and the 

fundamental theorem of calculus. Also by FTC, 

𝑃(𝑥, 𝑦) − 𝑃(𝑥, 𝑦0) = ∫ 𝑃𝑦(𝑥, 𝑡)𝑑𝑡
𝑦

𝑦0
= ∫ 𝑄𝑥(𝑥, 𝑡)𝑑𝑡

𝑦

𝑦0
 since 𝑃𝑦 = 𝑄𝑥. Therefore, 

𝐹𝑥 = 𝑃(𝑥, 𝑦0) + ∫ 𝑄𝑥(𝑥, 𝑡)𝑑𝑡
𝑦

𝑦1

+ 𝑃(𝑥, 𝑦) − 𝑃(𝑥, 𝑦0) = 𝑃(𝑥, 𝑦) 

And we can prove similarly that 𝐹𝑦 = 𝑄(𝑥, 𝑦). 

Thus f is a function whose differential is the exact differential Pdx+Qdy as required. We used simply-
connected-ness because when we prove that f is well defined, we use the “rectangle lemma”, which 
has to hold even if the axis aligned path which integrates to 0 encloses the loop, as we asserted that 
this path integrates to 0, hopefully this makes sense. 

Example: 

6𝑦(𝑦 − 𝑥)
𝑑𝑦

𝑑𝑥
+ 2𝑥 − 3𝑦2 = 0  

6𝑦(𝑦 − 𝑥)𝑑𝑦 + (2𝑥 − 3𝑦2)𝑑𝑥 = 0  

Now this is exact by the Poincare lemma. This is because 𝑃𝑦 = 𝑄𝑥 = −6𝑦 and this is defined 
everywhere and thus on any SCD. 

Lets try to solve for P: 𝑓𝑥 = 2𝑥 − 3𝑦2 so 𝑓 = 𝑥2 − 3𝑥𝑦2 + ℎ(𝑦) 

The point is that h vanishes when we differentiate wrt x so it can be any function of y, kind of like the 
generalized constant of integration. 

For Q: 𝑓𝑦 = 6𝑦2 − 6𝑥𝑦 so 𝑓 = 2𝑦3 − 3𝑥𝑦2 + ℎ(𝑥) 

Thus if we set ℎ(𝑥) = 𝑥2 and ℎ(𝑦) = 2𝑦3 we have an exact differential. This is no longer dependent on 
the Poincare lemma. So the solution is given by 

2𝑦3 − 3𝑥𝑦2 + 𝑥2 = 𝐶 

Sometimes solutions to DEs are impossible to write in closed form, but we can still analyse the 
behavior of solutions with graphical methods. Each initial condition generates a distinct solution. 

If I have 𝑑𝑦
𝑑𝑥
= 𝑓(𝑥, 𝑦) what I can do is draw a derivative vector field and try to sketch the solution curves 

without solving the equation by following the vector field. Here is what I mean: 

For example: 𝑑𝑦
𝑑𝑥
= 𝑥(1 − 𝑦2) can be solved, but I will do this example to show the method. 



Here is the slope field from wolfram alpha, this is the vector field I mean: We find dy/dx at each point 
and sketch something like this. 

 

Now here is my attempt to follow the lines to get solution curves. An alternative way is to draw the 

contours 𝑑𝑦
𝑑𝑥
= 𝑐 and try to make a line to connect it appropriately. These contours are called isoclines. 

In particular, look for when 𝑑𝑦
𝑑𝑥
= 0 and try to solve for y to see if you can identify any constant 

solutions. In this particular equation we can find this way that 𝑦 = ±1 are solutions. 

 

As you can see, the solution y=1 is stable because the solutions around it are “attracted” to it. The 
solution y=-1 is unstable because the solutions around it are “repelled” from it. Since the derivative is 
positive if and only if -1<y<1, this implies that all solutions will approach either 1 or negative infinity as 
x increases, which is why we see this behavior. It’s kind of like how if you put a pendulum vertically it 
may stay stable but if you push it even a little bit it will fall. 

Lecture 9: 

We will do an example of how we can sketch isoclines for the equation above. We want D (The 

derivative) to be a constant, and 𝐷 = 𝑥(1 − 𝑦2) so it is constant when 𝑦2 = 1 − 𝐷

𝑥
. Here are what the 



isoclines look like: We could sketch the graph by trying to fit a curve to be at the right slope at the 
relevant isoclines. 

 

Definition: A fixed point is a solution y=c. It is stable if when y deviates from c by a sufficiently small 
amount it converges back to c as x increases. An unstable fixed point is a fixed point that is not stable. 

We will now show some methods of determining whether a fixed point is stable. This is called 

Perturbation analysis. Suppose y=c is a fixed point of 𝑑𝑦
𝑑𝑥
= 𝑓(𝑥, 𝑦), then set y=c+ε. Then                        

𝑑𝜀

𝑑𝑥
= 𝑓(𝑥, 𝑐 + 𝜀). If f is differentiable at constant x, we can write 𝑑𝜀

𝑑𝑥
= 𝑓(𝑥, 𝑐) + ε𝑓𝑦(𝑥, 𝑐) + 𝑜(𝜀). The 

first term is zero because of the setup. Therefore if 𝑓𝑦(𝑥, 𝑐) is positive, the solution will be unstable 
since ε will grow, and otherwise the solution is stable since ε will shrink. If 𝑓𝑦(𝑥, 𝑐) is zero we need to 
add more terms to determine stability. The series will look like 𝑓(𝑥, 𝑐) + ε2𝑓𝑦𝑦(𝑥, 𝑐) so we would need 
to consider the sign of ε𝑓𝑦𝑦(𝑥, 𝑐) to see if epsilon gets bigger or smaller. 

Lets do this on the example 𝑑𝑦
𝑑𝑥
= 𝑥(1 − 𝑦2). Suppose 𝑐 = 1, then  𝑑𝜀

𝑑𝑥
= 𝑓(𝑥, 1) + ε𝑓𝑦(𝑥, 1) + 𝑜(𝜀) 

= ε(−2xy) + 𝑜(𝜀). Therefore as x grows, ε grows negatively proportional to itself so it goes to 0. At c=-1 

we get that 𝑑𝜀
𝑑𝑥
= ε(−2xy) + o(𝜀) which as x grows is now proportional to itself so ε will get larger so the 

solution is unstable. 

Definition: An autonomous differential equation is one which does not depend on x (or the 
independent variable). For first order ones, we can give a formula for the solution but not always a 
closed form: 

If 𝑑𝑦
𝑑𝑥
= 𝑓(𝑦) then ∫𝑑𝑥 = ∫

1

𝑓(𝑦)
𝑑𝑦, so 𝑥 + 𝑐 = ∫

1

𝑓(𝑦)
𝑑𝑦. However, this is hard to solve in closed form in 

general. 

Example: Consider 𝑑𝑦
𝑑𝑥
= 𝑦2 so 𝑓 = 𝑦2. This has a solution when 𝑦 = 0. Lets see if this is stable or 

unstable. Lets set 𝑦 = 𝜀, then 𝑑𝜀
𝑑𝑥
= ε(f𝑦(𝑥, 0)) + ε

2(𝑓𝑦𝑦(𝑥, 0)) + 𝑜(𝜀
2). Since f does not depend on x, 

we can write 𝑑𝜀
𝑑𝑥
= ε(0) + ε2(2) + 𝑜(𝜀2) = 𝜀(2𝜀 + 𝑜(𝜀)). This means the solution is stable if 2𝜀 + 𝑜(𝜀) 

is negative, which means it is stable if we perturb y down but unstable if we perturb y up. 

Example (in Chemistry): 



Suppose we have a reaction A + B -> C + D where at the start we have 𝑎0, 𝑏0 of A and B and 0 of C and 
D. Suppose a(t), b(t), c(t) and d(t) are the amount of each chemical we have at any given time. Assume 
the system is modelled by: 

𝑎(𝑡) + 𝑐(𝑡) = 𝑎0 and 𝑏(𝑡) + 𝑐(𝑡) = 𝑏0 and 𝑐(𝑡) = 𝑑(𝑡) and 𝑑𝑐
(𝑡)

𝑑𝑡
= 𝜆𝑎(𝑡)𝑏(𝑡). These are realistic for 

some real world reasons but that is irrelevant and I don’t really understand it anyway. Rearranging we 

get 𝑑𝑐
(𝑡)

𝑑𝑡
= 𝜆(𝑎0 − 𝑐(𝑡))(𝑏0 − 𝑐(𝑡)). This is an autonomous system and next lecture we will analyze its 

stability. These ideas could therefore be useful in the context of chemistry. 

Lecture 10: 

Let’s assume that 𝑎0 < 𝑏0 without loss of generality. 𝑐 = 𝑏0 and 𝑐 = 𝑎0 are constant solutions. We 

need to calculate 𝑑𝑓
𝑑𝑐

, which is 𝜆(2𝑐 − 𝑎0 − 𝑏0). At 𝑐 = 𝑎0 this equals 𝜆(𝑎0 − 𝑏0), and at 𝑐 = 𝑏0 this 

equals 𝜆(𝑏0 − 𝑎0). Recall that the stability depends on the sign of 𝑑𝑓
𝑑𝑐

, which means that 𝑐 = 𝑎0 is a 

stable fixed point and 𝑐 = 𝑏0 is unstable. However, 𝑐 = 𝑏0 is not possible for physical reasons (there 
would be negative amount of a). For autonomous systems like this, we can quickly see by plotting f 
against c and looking at its slope at the roots whether each solution is stable. (Screenshots from other 
cambridge notes) 

 

We can also draw a 1D phase portrait to plot the trajectory of c with time. We can use open and closed 
circles to represent stable and unstable fixed points. 

 

Example (logistic equation, this is really cool): 

Suppose we have a population of size 𝑦(𝑡) and a birth rate equal to 𝑎𝑦 and a death rate equal to 𝑏𝑦 +

𝑐𝑦2. Set 𝑎 − 𝑏 = 𝑥, so now we have 𝑑𝑦
𝑑𝑡
= 𝑥𝑦(1 −

𝑦

𝑌
) where Y is a constant. This is separable and not 

that hard to solve, but we will not do that – instead we will analyze its behavior. 

The fixed points are y=0 and y=Y. The graph of y’ against y will be an upside down parabola through 0 
and y – Thus the fixed points are 0 and Y. This can be interpreted – If the population is 0 and you add a 
slight amount to the population it will continue to grow, and it will approach Y. 



Now we will do this as a discrete equation (this is another term for a recurrence relation). This is 
similar to what we did back in that level 4 video about cobweb diagrams. 

A fixed point of a first order discrete equation (ie an equation of the form 𝑥𝑛+1 = 𝑓(𝑥𝑛)) is defined as a 
value of 𝑥𝑛 with 𝑓(𝑥𝑛) = 𝑥𝑛. This means we will stay at 𝑥𝑛 forever if we reach it. Recall from level 4 that 
the point is stable if the derivative of 𝑓 is strictly between -1 and 1 in the vicinity of the point, and 
unstable if the derivative of 𝑓 is strictly greater than 1 or less than -1 in the vicinity of the point. 

Note that if the derivative is between 0 and 1 we will move monotonically towards the fixed point, and 
if it is between 0 and -1 we will oscillate around the fixed point with decreasing magnitude. 

Now we will analyze the equation 𝑥𝑛+1 = 𝑟𝑥𝑛(1 − 𝑥𝑛): This is the discrete logistic equation and it is 
related to the differential version, but this is where things get really interesting. In fact, my example 
from level 4 of chaotic behavior was one of these equations with r carefully chosen. We will analyze 
this in the case that 𝑥𝑛 is positive. 

Now our 𝑓(𝑥𝑛) = 𝑟𝑥𝑛(1 − 𝑥𝑛). We will sketch this. Since the maximum of 𝑟𝑥𝑛(1 − 𝑥𝑛) turns out to be 
r/4 by simple calculus, we will only consider r between 0 and 4 so that x stays positive. 

Here is x with the family of parabolas: 

 

Solving for fixed ponits gives 𝑥𝑛 = 0, 1 −
1

𝑟
. We see that if r<1, we will not have any positive fixed points, 

and we will have a stable fixed point at 0 by the derivative criterion, so if this is a population then 
everyone would die. 

Again by simple calculus, the derivative of f is 2-r at the non-zero fixed point, and thus when 1<r<3 the 
fixed point is stable. The fascinating behavior happens when 3<r<4. The recurrence relation behaves 
chaotically and unpredictably in this case. 

Lecture 11: 

The lecture is mostly a review of 2nd order ODE’s with constant coefficients. We know how to solve 
these from A level. The lecturer spends the entire lecture giving a much harder derivation than the one 
in level 6, and therefore this section of the notes will be very short. 

Definition: A differential operator is something like, for example (𝑎𝐷2 + 𝑏𝐷 + 𝑐) defined by 
(𝑎𝐷2 + 𝑏𝐷 + 𝑐)𝑦 = 𝑎𝑦′′ + 𝑏𝑦′ + 𝑐. It is linear if it is like a polynomial in D as in the previous example, 
or equivalently for an operator Ɗ, Ɗ(ax+by)=aƊx+bƊy – It is easy to check that polynomial operators 
satisfy this relation. What I did implicitly in level 6 was factor this polynomial to derive the solution to 
2nd order ODE’s with constant coefficients, but I did this without bringing up all this operator jargon. 



Definition: Solutions to a DE are linearly independent if they are not linearly dependent, linearly 
dependent means one of the solutions can be written as a sum of constant multiples of the others. 

Lecture 12: 

We note that the solution to 𝑎𝑦′′ + 𝑏𝑦′ + 𝑐 in the repeated roots case seems different from the 
solution in the other cases but it can be thought of as the limit of nearby cases. 

For example, if the equation is 𝑦′′ − 4𝑦′ + (4 − 𝜀2)𝑦 = 0 then the roots of the characteristic equation 
are 2 ± 𝜀. We will show another method and then go back to this limiting case. 

Theorem: A first order linear homogenous ODE with leading coefficient 1 and the other coefficient 
continuous has 1 linearly independent solution 

Proof: Integrating factor 

Suppose we have an equation of the form 𝑦′′ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 0 and we have a non-zero solution 
𝑦1(𝑥). Then we can try a substitution 𝑦(𝑥) = 𝑉(𝑥)𝑦1(𝑥). By the product rule, 𝑦′ = 𝑉′𝑦1 + 𝑉𝑦1′, and              
𝑦′′ = 𝑉′′𝑦1 + 2𝑉

′𝑦1
′ + 𝑉𝑦1

′′. Therefore, our equation becomes                                                                        
𝑉′′𝑦1 + 2𝑉

′𝑦1
′ + 𝑉𝑦1

′′ + 𝑝(𝑉′𝑦1 + 𝑉𝑦1
′) + 𝑞(𝑉𝑦1) = 0. But our assumption was                                           

𝑦1
′′ + 𝑝(𝑥)𝑦1

′ + 𝑞(𝑥)𝑦1 = 0 since 𝑦1 was a solution. Therefore we can get rid of that and just solve 
𝑉′′𝑦1 + 2𝑉

′𝑦1
′ + 𝑝(𝑉′𝑦1) = 0. If we let 𝑈 = 𝑉′, we have 𝑈′𝑦1 + 𝑈(2𝑦1′ + 𝑃𝑦1) = 0. The idea is this 

equation can now be solved for U. We have 𝑈
′

𝑈
= −

2𝑦1′

𝑦1
− 𝑝 so by integrating both sides,                 

ln(𝑈) = −2 ln(𝑦1) − ∫𝑝(𝑥)𝑑𝑥. Finally, we have that 𝑈 = 𝐴

𝑦1
2 𝑒

−∫𝑝(𝑥)𝑑𝑥 where A is some constant. We 

could now integrate U to find V and then get the general solution to the original equation from finding a 
single solution. This method is called reduction of order. 

Note that I almost want to say that from this we prove directly that such an equation has exactly two 
lineraly independent solutions. The above method gives a proof that this fact holds any time there is a 
solution that is never zero that we can use as our 𝑦1. I will now prove the full statement, but first we 
need to introduce a new analysis concept. 

Theorem: A second order linear homogenous ODE with leading coefficient 1 and the other 
coefficients continuous has 2 linearly independent solutions. Let the equation be of the form            
𝑦′′ + 𝑝(𝑥)𝑦 + 𝑞(𝑥) = 0 with p and q continuous on some interval. 

Proof: Since the equation is linear, we can prove uniqueness of the solution for any (𝑦0, 𝑦0′) = (𝑎, 𝑏) by 
proving that the difference between any such solutions is 0, meaning equivalently if we set (𝑦0, 𝑦0′) =
(0,0) then the solution must be identically 0. 

Set 𝜇(𝑥) = exp (∫ 𝑝(𝑡)𝑑𝑡
𝑥

𝑥0
). Now lets evaluate (𝜇𝑦′)′ = 𝜇𝑦′′ + 𝜇′𝑦′ 

= exp (∫ 𝑝(𝑡)𝑑𝑡
𝑥

𝑥0
) 𝑦′′ + 𝑝(𝑥) exp (∫ 𝑝(𝑡)𝑑𝑡

𝑥

𝑥0
) 𝑦′ = −𝑞(𝑥)𝜇(𝑥)𝑦(𝑥) where the last equality is by the 

differential equation. 

Integrating (𝜇𝑦′)′ = −𝜇𝑞𝑦 from 𝑥0 to 𝑥 gives 𝜇𝑦′ = −∫ 𝜇(𝑡)𝑞(𝑡)𝑦(𝑡)𝑑𝑡
𝑥

𝑥0
, where since 𝑦′(𝑥0) = 0 we’re 

ok for the lower limit on the left hand side. 

Now we have that 𝑦′(𝑠) = − 1

𝜇(𝑠)
∫ 𝜇(𝑡)𝑞(𝑡)𝑦(𝑡)𝑑𝑡
𝑠

𝑥0
, so we can integrate again to get: 



𝑦(𝑥) = −∫
1

𝜇(𝑠)
∫ 𝜇(𝑡)𝑞(𝑡)𝑦(𝑡)𝑑𝑡

𝑠

𝑥0

𝑑𝑠
𝑥

𝑥0

. 

Now since 𝑞(𝑡) is continuous on [𝑥0, 𝑥] it is bounded there and by extension so is 𝜇(𝑡) and 𝜇(𝑡)−1 
since 𝜇(𝑡) is never 0 as it is an exponential. Therefore we can use the triangle inequality for integrals 
and the fact that there is such a bound to get: 

𝑦(𝑥) ≤ 𝐶 ∫ ∫ |𝑦(𝑡)|𝑑𝑡
𝑠

𝑥0

𝑑𝑠
𝑥

𝑥0

 

Now define a region 𝑅 ≔ {(𝑡, 𝑠): 𝑥0 ≤ 𝑡 ≤ 𝑠 ≤ 𝑥}. This is a triangular region. Since we have a non-
negative integrand, if it converges then it converges absolutely, so (cf level 6 technical results) we can 
integrate over the same triangular region in another order. 

∫ ∫ |𝑦(𝑡)|𝑑𝑡
𝑠

𝑥0

𝑑𝑠
𝑥

𝑥0

= ∫ (∫ |𝑦(𝑡)|𝑑𝑠
𝑥

𝑠=𝑡

)𝑑𝑡
𝑥

𝑡=𝑥0

= ∫ |𝑦(𝑡)|(𝑥 − 𝑡)𝑑𝑡
𝑥

𝑥0

 

Now we have |𝑦(𝑥)| ≤ 𝐶 ∫ |𝑦(𝑡)|(𝑥 − 𝑡)𝑑𝑡
𝑥

𝑥0
. Let 𝑀(𝑥) = sup

𝑥0≤𝑡≤𝑥
|𝑧(𝑡)|, then 

 |𝑦(𝑥)| ≤ 𝐶𝑀(𝑥) ∫ (𝑥 − 𝑡)𝑑𝑡
𝑥

𝑥0
= 𝐶𝑀(𝑥)

(𝑥−𝑥0)
2

2
. Let s be the value such that y attains its maximum 

absolute value between 𝑥0 and 𝑥. We need to justify that we can do this: We will show after this that y 

is bounded on any interval in order to justify this. Then 𝑀(𝑥) = |𝑦(𝑠)| ≤ 𝐶𝑀(𝑠)
(𝑠−𝑥0)

2

2
≤ 𝐶𝑀(𝑥)

(𝑥−𝑥0)
2

2
 

since that last function is increasing in x since M is by definition and the square part clearly is. 
Therefore 

 𝑀(𝑥) ≤ 𝐶𝑀(𝑥)
(𝑥−𝑥0)

2

2
 so 𝑀(1 − 𝐶

(𝑥−𝑥0)
2

2
) ≤ 0. Since this holds for any x, it holds for 𝑥 = 𝑥0 + ℎ, but 

the right hand side is M times a negative thing, so M must be 0, so our function must be 0 on the 

interval [𝑥0, 𝑥0 + ℎ]. We can repeat this argument 𝑥−𝑥0
ℎ

 times to get the desired result, and since x was 

arbitrary this is true everywhere, and its true before 𝑥0 by just flipping everything around. So done. 

Now pick ℎ < √2
𝐶

, meaning 𝐶ℎ
2

2
< 1. Then for every 𝑡 ∈ [𝑥0, 𝑥0 + ℎ], 

𝐶ℎ2

2
≤
𝐶(𝑥−𝑥0)

2

2
.  

Theorem: Any solution on a closed bounded interval to a differential equation with continuous 
coefficients 𝑦(𝑛) + 𝑝𝑛−1(𝑥)𝑦(𝑛−1) +⋯+ 𝑝1(𝑥)𝑦′ + 𝑝0(𝑥)𝑦 = 0 is bounded 

Proof: Set 𝑌(𝑥) = (

𝑦(𝑥)

𝑦′(𝑥)
:

𝑦(𝑛−1)(𝑥)

). Then we have 𝑌′(𝑥) = 𝐴(𝑥)𝑌(𝑥) where A is the n*n matrix 

(

 
 

0 1 0 … 0
0 0 1 … 0
: : : … :
0 0 0 … 1
−𝑝0 −𝑝1 −𝑝2 … −𝑝𝑛−1)

 
 

 

You can convince yourself that the above equality is true by checking each component. 



Now pick an interval J=[A,B]. Then the operator norm (Which we defined in one of the first lectures 
when we were doing multivariable calculus) is bounded on J since all the entries are bounded. Let M 
be the supremum of the operator norm of A in J. 

We can integrate both sides of 𝑌′(𝑥) = 𝐴(𝑥)𝑌(𝑥) from 𝑥0 to 𝑥 to get 𝑌(𝑥) = 𝑌(𝑥0) + ∫ 𝐴(𝑡)𝑌(𝑡)𝑑𝑡
𝑥

𝑥0
. By 

the triangle inequality and the operator norm inequality that we derived in the earlier lecture where we 

introduced operator norms, we must have that |𝑌(𝑥)| ≤ |𝑌(𝑥0)| + ∫ |𝐴(𝑡)||𝑌(𝑡)|𝑑𝑡
𝑥

𝑥0
 

≤ |𝑌(𝑥0)| + 𝑀∫ |𝑌(𝑡)|𝑑𝑡
𝑥

𝑥0
. 

Now set 𝑣(𝑥) ≔ |𝑌(𝑥0)| + 𝑀∫ |𝑌(𝑡)|𝑑𝑡
𝑥

𝑥0
, then we have shown that |𝑌(𝑥)| ≤ 𝑣(𝑥). 𝑣′(𝑥) = 𝑀|𝑦(𝑥)| so 

therefore 𝑣′(𝑥) ≤ 𝑀𝑣(𝑥) since |𝑌(𝑥)| ≤ 𝑣(𝑥). This certainly looks promising since it seems like v can 
be bounded by an exponential: Lets make this precise. Let 𝑤(𝑥) = 𝑣(𝑥)𝑒−𝑀𝑥, then                           
𝑤′(𝑥) = 𝑒−𝑀𝑥(𝑣′(𝑥) − 𝑀𝑣(𝑥)) which means w is decreasing by 𝑣′(𝑥) ≤ 𝑀𝑣(𝑥). Therefore since 
𝑣(𝑥)𝑒−𝑀𝑥 is decreasing, 𝑣(𝑥) ≤ 𝑣(𝑥0)𝑒𝑀(𝑥−𝑥0). Therefore since |𝑌(𝑥)| ≤ 𝑣(𝑥), 

|𝑌(𝑥)| ≤ 𝑣(𝑥0)𝑒
𝑀(𝑥−𝑥0) = |𝑌(𝑥0)|𝑒

𝑀(𝑥−𝑥0). Last equality from how v was defined. Therefore on our 
interval [a,b], Y is bounded by |𝑌(𝑥)| ≤ |𝑌(𝑥0)|𝑒𝑀(𝑏−𝑎) (since we can do the same argument 
backwards). 

But now, since Y is bounded and its components are 𝑦, 𝑦′, 𝑦′′, 𝑦′′′, …, none of these components can 
be larger than the absolute value of Y. In particular y. So y is bounded. So done. 

For an n’th order linear ODE, 𝑦(𝑛)(𝑥) is determined by all the lower derivatives of y from how we’ve 
defined the equations. Differentiating the entire ODE determines all higher derivatives. In fact, if the 
first n-1 derivatives of y are specified at a point 𝑥0 then we can get a taylor series for y about 𝑥0. At 

some fixed x, the vector 𝑌(𝑥) =

(

 
 

𝑦(𝑥)

𝑦′(𝑥)

𝑦′′(𝑥)
:

𝑦(𝑛−1)(𝑥))

 
 

 defines a point in what is called phase space. We will 

use capital Y to denote this vector and lowercase y to denote a function y(x). As x varies, we trace out 
a trajectory in phase space. 

Example, if 𝑦′′ + 4𝑦 = 0, and we have a solution 𝑦1(𝑥) = cos (2𝑥), then the vector 𝑌1(𝑥) is 

(
cos(2𝑥)
−2sin(2𝑥)

). If 𝑦2(𝑥) = sin (2𝑥), then 𝑌2(𝑥) = (
sin(2𝑥)
2cos (2𝑥)

). 

If we plot y’ against y, then our vectors as x varies trace out an ellipse. 

Now suppose we have a set of solutions {𝑦𝑖(𝑥)} which are linearly dependent for all x, then it follows 
that the vectors {𝑌𝑖(𝑥)} are linearly dependent for all x. 

Definition (Wronskian): Suppose we have n solutions to an ODE. Then we define                                 

𝑊(𝑥) = det (
: : … :
𝑌1 𝑌2 … 𝑌𝑛
: : … :

) = det(

𝑦1 𝑦2 … 𝑦𝑛
𝑦1′ 𝑦2′ … 𝑦𝑛′
: : : :

𝑦1
(𝑛−1) 𝑦2

(𝑛−1) … 𝑦𝑛
(𝑛−1)

). If the solutions are linearly 

dependent, W(x)=0 for all x. Otherwise, the solutions are linearly independent. However, it is not 
necessarily true that if W(x)=0 for all x then the solutions are linearly dependent. 



Example: For the 𝑦′′ + 4𝑦 = 0 example above, 𝑊(𝑥) = det (
cos(2𝑥) sin (2𝑥)
−2sin(2𝑥) 2cos (2𝑥)

) = 2. 

Lecture 13: 

Theorem: Given any 2 solutions of a second order linear ODE y’’+p(x)y’+q(x)y=0, if p(x) and q(x) are 
continuous on an interval I, then either W(x)=0 for all x in I, or W(x) is not 0 for all x in I. 

Proof: 

𝑊 = |
𝑦1 𝑦2
𝑦1′ 𝑦2′

| = 𝑦1𝑦2
′ − 𝑦2𝑦1′ 

Therefore 𝑊′ = 𝑦1𝑦2
′′ − 𝑦2𝑦1′′ by the product rule (Other terms cancel). From the differential equation, 

𝑊′ = −𝑦1(𝑝𝑦2
′ + 𝑞𝑦2) + 𝑦2(𝑝𝑦1

′ + 𝑞𝑦1) 

𝑊′ = −𝑝𝑦1𝑦2
′ + 𝑦2𝑝𝑦1

′ = −𝑝𝑊 

So 𝑊(𝑥) = 𝑊(𝑥0)𝑒
−∫ 𝑝(𝑢)𝑑𝑢

𝑥
𝑥0  so if it is not 0 for some x it is not 0 for all x. 

Note that sometimes people say “The solutions are linearly independent for some x iff they are linearly 
independent for all x”, but be careful: Linearly independent in this sense literally means the solution 
vectors evaluated at a point. Linearly independent in the globgal sense means solutions forming a 
basis. These notes originally had a proof that 2nd order linear ODE’s had 2 linearly independent 
solutions which interchanged these two definitions and was therefore flawed. 

We need continuity because 𝑊′ must be integrable and thus 𝑦2′′ and 𝑦1′′ being integrable gurantees 
this. Continuity gurantees that 𝑦1′′ = −𝑝(𝑦1′) − 𝑞(𝑦1) is continuous and thus integrable, and for p to be 
integrable since we integrate it in the above proof, in which the integral should be defined to ensure its 
exponential is never zero. 

Corollary: if p=0, W is constant, and in fact we can find it without solving the ODE. 

Example: In Bessel’s equation 𝑥2𝑦′′ + 𝑥𝑦′ + (𝑥2 − 𝑛2)𝑦 = 0, 𝑊(𝑥) = 𝑊(𝑥0) exp (−∫
1

𝑢
𝑑𝑢

𝑥

𝑥0
) =

𝐶

𝑥
 for 

som C. 

Since we know that 𝑦1𝑦2′ − 𝑦2𝑦1′ = 𝑊(𝑥0)𝑒
−∫ 𝑝(𝑢)𝑑𝑢

𝑥
𝑥0  

So 𝑑
𝑑𝑥
(
𝑦2

𝑦1
) =

1

𝑦1
2𝑊(𝑥0)𝑒

−∫ 𝑝(𝑢)𝑑𝑢
𝑥
𝑥0  by the quotient rule, and this is the same result as from earlier to get 

a second solution given a first solution to a differential equation. 

We can also solve equidimensional equations. These are equations of the form 𝑎𝑥𝑦′ + 𝑏𝑦 = 𝑓(𝑥) or 
𝑎𝑥2𝑦′′ + 𝑏𝑥𝑦′ + 𝑐𝑦 = 𝑓(𝑥). These equations can be turned into a constant coefficients version using 
the substitution z=ln(x). 

If g(x) is a solution to such an equation with f(x)=0, then consider 𝑦 = 𝑑𝑔(𝑘𝑥)

𝑑𝑥
.  𝑑𝑦
𝑑𝑥
= 𝑘𝑔′(𝑘𝑥) by the chain 

rule, so 𝑥 𝑑𝑦
𝑑𝑥
= (𝑘𝑥)𝑔′(𝑘𝑥) and 𝑥2 𝑑

2𝑦

𝑑𝑥2
= (𝑘𝑥)2𝑔′′(𝑘𝑥). So 𝑎𝑥2𝑦′′ + 𝑏𝑥𝑦′ + 𝑐𝑦 =

             𝑎(𝑘𝑥)2𝑔′′(𝑎𝑥) + 𝑏(𝑎𝑥)𝑔′(𝑎𝑥) + 𝑐𝑔(𝑎𝑥) = 0, so the solutions scale: If g(x) is a solution then so 
is g(ax). 



Example: Suppose we have 𝑎𝑥2𝑦′′ + 𝑏𝑥𝑦′ + 𝑐𝑦 = 𝑓(𝑥) and let z=ln(x). 𝑑𝑦
𝑑𝑧
=
𝑑𝑥

𝑑𝑧

𝑑𝑦

𝑑𝑥
= 𝑥

𝑑𝑦

𝑑𝑥
  since          

𝑑𝑥

𝑑𝑧
= exp(𝑧) = 𝑥. 𝑑

2𝑦

𝑑𝑧2
= 

𝑑2𝑥

𝑑𝑧2
𝑑𝑦

𝑑𝑥
+
𝑑𝑥

𝑑𝑧

𝑑2𝑦

𝑑𝑥2
𝑑𝑥

𝑑𝑧
 since 𝑑

𝑑𝑧
(
𝑑𝑦

𝑑𝑥
) =

𝑑𝑥

𝑑𝑧
(
𝑑

𝑑𝑥
(
𝑑𝑦

𝑑𝑥
)) by the chain rule. 

= 𝑒𝑧
𝑑𝑦

𝑑𝑥
+ (

𝑑𝑥

𝑑𝑧
)
2

𝑦′′ = 𝑥𝑦′ + 𝑥2𝑦′′. Therefore our equation becomes 𝑎 𝑑
2𝑦

𝑑𝑧2
+ (𝑏 − 𝑎)

𝑑𝑦

𝑑𝑧
+ 𝑐𝑦 = 𝑓(𝑒𝑧). 

Therefore we get the characteristic equation 𝑎𝑚2 + (𝑏 − 𝑎)𝑚 + 𝑐 = 0, so our complementary 
function is either of the form 𝑧 = 𝐴𝑒𝑘1𝑧 + 𝐵𝑒𝑘2𝑧 or, if there are repeated roots, 𝑧 = (𝐴𝑧 + 𝐵)𝑒𝑘𝑧. 
Reversing the substitution gives 𝑦 = 𝐴𝑥𝑘1 + 𝐵𝑥𝑘2  or, if repeated roots, 𝑦 = (𝐴𝑙𝑛(𝑥) + 𝐵)𝑥𝑘. 

Here is an example of an interesting case: If we have 𝑥2𝑦′′ + 𝑥𝑦′ + 𝑦 = 0, and we do the substitution, 
although I won’t go through the algebra explicitly, it turns out that we get that 𝑦 = 𝐴𝑥𝑖 + 𝐵𝑥−𝑖, and that 
if we force y real then our solutions are 𝐴𝑐𝑜𝑠(ln(𝑥)) + 𝐵𝑠𝑖𝑛(ln(𝑥)). As x goes to 0, ln(x) goes to 
negative infinity, and as this happens, the cos and sin of ln(x) starts to oscillate wildly, as shown in the 
graph below. I will show a graph of cos(5ln(x)) so you can see the behavior yourself since if I put 
cos(ln(x)) you can’t see the oscillations very well. 

Image: The graph y=cos(5ln(x)) 

Lecture 14: 

Note that we can try particular solutions to a differential equation even when there is a more 
complicated forcing (right hand side) term. Eg, by using common sense, our guess for the particular 
solution to y’’-5y’+6y=2x+exp(4x) would be Aexp(4x)+Bx+C. 

Also note that if the complementary function has repeated roots AND the right hand side shares a 
term, we can derive by the substitution method that we just have to multiply by x a second time. 

For equidimensional equations, if there is a right hand side term of the form 𝑥𝑚, we try a particular 
integral of the form 𝑥𝑚 in the case it does not match a C.F. term. This can be derived from the 
substitution shown last lecture. If we have a degenerate case with repeated roots or the forcing term 
matching a CF term, we can try multiplying by factors of log (𝑥), since we have seen that we get 
factors of x in the case of the constant coefficient equation, and the substitution 𝑧 = log (𝑥) turns an 
equidimensional equation into such an equation in which we multiply by z in these degenerate cases. 

Consider the general equation given by y’’+p(x)y’+q(x)y=f(x) in which we have two linearly independent 
complementary functions 𝑦1, 𝑦2. We can use the solution vectors 𝑌1, 𝑌2. Let 𝑌𝑝 be the solution vector 
for our particular integral and write 𝑌𝑝 = 𝑢(𝑥)𝑌1 + 𝑣(𝑥)𝑌2. The purpose of this method is to try to solve 



for u and v as functions of x. Component-wise, we have that  𝑦𝑝(𝑥) = 𝑢(𝑥)𝑦1(𝑥) + 𝑣(𝑥)𝑦2(𝑥), and 
𝑦𝑝
′(𝑥) = 𝑢(𝑥)𝑦1

′(𝑥) + 𝑣(𝑥)𝑦2
′(𝑥). We also have that 𝑦𝑝′′(𝑥) = 𝑢𝑦1′′ + 𝑢′𝑦1′ + 𝑣𝑦2′′ + 𝑣′𝑦2′ . Therefore 

𝑓(𝑥) = 𝑢𝑦1
′′ + 𝑢′𝑦1

′ + 𝑣𝑦2
′′ + 𝑣′𝑦2

′ + 𝑝(𝑥)(𝑢𝑦1
′ + 𝑣𝑦2

′) + 𝑞(𝑥)(𝑢𝑦1 + 𝑣𝑦2) by the original differential 
equation. Since 𝑦1, 𝑦2 are complementary functions, they satisfy the homogenous equation so we can 
get rid of these terms and write 𝑢′𝑦1′ + 𝑣′𝑦2′ = 𝑓(𝑥). However, since 𝑢(𝑥)𝑦1′(𝑥) + 𝑣(𝑥)𝑦2′(𝑥) must be 
the derivative of 𝑢(𝑥)𝑦1(𝑥) + 𝑣(𝑥)𝑦2(𝑥), it means the missing terms are 0. So 𝑢′𝑦1 + 𝑣′𝑦2 = 0. We can 

now see that (
𝑦1 𝑦2
𝑦1
′ 𝑦2

′) (
𝑢′
𝑣′
) = (

0
𝑓(𝑥)

). Therefore (𝑢′
𝑣′
) =

1

𝑊
(
𝑦2
′ −𝑦2

−𝑦1
′ 𝑦1

) (
0
𝑓(𝑥)

) =
1

𝑊
(
−𝑦2𝑓(𝑥)
𝑦1𝑓(𝑥)

). Now 

we can integrate these functions to get u and v and thus the particular integral. We get that                 

𝑦𝑝 = 𝑦2(𝑥) ∫
𝑦1𝑓(𝑥)

𝑊
𝑑𝑥 − 𝑦1(𝑥) ∫

𝑦2𝑓(𝑥)

𝑊
𝑑𝑥. This is actually the general solution and fixing the constant 

of integration gives the particular solution – Changing it just changes the solution by multiples of the 
complementary function. 

Lecture 15: 

Example: Lets try to find a particular solution to 𝑦′′ + 4𝑦 = sin (2𝑥). We have two complementary 
functions: sin(2𝑥) , cos(2𝑥). We need to find W: We found a few lectures ago that W=-2 if                     

𝑦1 = sin(2𝑥) , 𝑦2 = cos (2𝑥).  𝑦𝑝 = cos(2𝑥) ∫
sin2(2𝑥)

−2
𝑑𝑥 − sin(2𝑥) ∫

sin(2𝑥) cos(2𝑥)

−2
𝑑𝑥 =

−cos(2𝑥) (
1

4
𝑥 −

1

4
sin(4𝑥)) −

1

4
sin(2𝑥) cos (4𝑥), dropping the constant since we just need 1 solution. 

We can use some trig identities and remove some multiples of the complementary function and we 

will get a particular solution − 1

4
𝑥𝑐𝑜𝑠(2𝑥). 

Lets consider a differential equation that is supposed to represent a physical system but that is 
irrelevant since this is maths: The equation is 𝑚𝑦̈ + 𝑏𝑦̇ + 𝑘𝑦 = 𝑓(𝑡). We note that if b=0, the 

complementary function is a sine or cosine wave with frequency 1
2𝜋
√
𝑘

𝑚
. If 𝑏 < 2√𝑚𝑘 (to ensure the 

characteristic equation has imaginary roots) then what happens is we get a sine wave that decays 
over time with a lower frequency – We can see this in practice: If 𝑦′′ + 𝑦 = 0 we get normal sin and 

cos, and if 𝑦′′ + 𝑦′ + 𝑦 = 0 our general solution is 𝑒−
𝑥

2 (𝐴𝑠𝑖𝑛 (
√3

2
𝑥) + 𝐵𝑐𝑜𝑠 (

√3

2
𝑥)). We see the 

frequency decrease and “damping” occur. This is because of the solutions to the characteristic 
equation: As we increase the middle term the size of the imaginary parts decreases and we gain 
negative real part. There are irrelevant physical interpretations to this. If we increase b even more, 
then we just get exponential decay since we have no more sine terms. We note that the 

disappearence of the sine terms corresponds to the frequency going to zero as 𝑏 → 2√𝑚𝑘. If b is 

exactly 2√𝑚𝑘, we have no more oscillation but the decay is not quite exponential since we have 
something like 𝑥𝑒−𝑏𝑥. We note that in this case and even in the exponential decay case (since we have 
two different exponential terms), we can have our function grow to start with before decaying. The 
long term behavior is dominated by the term with slower decay. 

But that was just the complementary function. What if we have a forcing term? 

We note that since the complementary function always decays in the examples we are considering, 
the long term behavior goes to a particular integral. 



As an example, if the forcing term is a sine function that does not match any complementary function 
terms, then the behavior goes towards that sine function. If it does match the complementary 
function, the behavior goes to 𝑥𝑠𝑖𝑛(𝑥) with some constants added in there. I know I said the physical 
interpretation is irrelevant – and it is (I lose a brain cell every time this guy uses a physics term in the 
maths lecture which has happened like 27384293 times today) - but this is what resonant frequency 
and the breaking a wine glass trick and that kind of thing is about which is kinda cool I guess. 

Lecture 16: 

Motivation for what we will do: Consider a system that experiences a sudden force from time 𝑇 − 𝜀 to 
𝑇 + 𝜀, think like striking something with a hammer so it moves suddenly, or something suddenly 
hitting the ground when it falls. Now think about the limit as 𝜀 → 0+. The resulting function is 
something you can recall from the proof of the central limit theorem and chi squared tables: The dirac 
delta “Function”. Essentially a function that is 0 almost everywhere except for 1 point (0) where it is 
undefined and the integral at that point is 1. Recall that we can interpret this as the limit of a normal 
distribution with mean 0 and tinier variance, ie as it gets taller and thinner. We used this to get a pdf for 
a discrete distribution, and now we will use it in this context. We could use any other similar family of 
functions and take a “limit”. But this is should be thought of as a distribution and not a function: it only 
makes sense when you integrate it. 

Note that when this is included in a differential equation it only makes sense when we integrate it and 
impose all but the two highest derivatives of y to be continuous. 

Now consider the equation 𝑚𝑦̈ + 𝑏𝑦̇ + 𝑘𝑦 = 𝐶𝛿(𝑇 − 𝑡): The integral of this on both sides from 𝑇 − 𝜀 to 

𝑇 + 𝜀 as 𝜀 → 0 is 𝑚𝑦̈ + 𝑏𝑦̇ + 𝑘𝑦 = 𝐶𝛿(𝑇 − 𝑡). Then we get [𝑚𝑦̇ + 𝑏𝑦]𝑇−𝜀𝑇+𝜀 + 𝑘 ∫ 𝑦𝑑𝑥
𝑇+𝜀

𝑇−𝜀
= 𝐶 and we can 

take the limit as 𝜀 → 0. If we require y to be continuous, then we see that the only term that survives is 
[𝑚𝑦̇]𝑇−𝜀

𝑇+𝜀 , and then we see that 𝑦̇ is discontinuous. 

It may happen that if the gradient 𝑦̇ suddenly changes then the nature of the differential equation 
makes some oscillation happen. 

Properties: 

- 𝛿(𝑡) = 0 for all non-zero t. 

- ∫ 𝛿(𝑡)𝑑𝑡
𝑏

𝑎
= 1 if a<0, b>0 

- ∫ 𝑓(𝑡)𝛿(𝑡)𝑑𝑡
𝑏

𝑎
= 𝑓(0) if f is continuous at 0, a<0, b>0 

- ∫ 𝑓(𝑡)𝛿(𝑡 − 𝑡0)𝑑𝑡
𝑏

𝑎
= {

𝑓(𝑡0): 𝑎 < 𝑡0 < 𝑏
0: 𝑡0 < 𝑎, 𝑡0 > 𝑏

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑖𝑓 𝑡0 = 𝑎, 𝑡0 = 𝑏
  provided f is continuous at 𝑡0 since it has to 

be near 𝑓(𝑡0) near 𝑡0 for the whole limiting idea to work. If f is not continuous the integral is 
undefined. 

In a general case: If 𝑦′′ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 𝛿(𝑥), integrating both sides from −𝜀 to 𝜀 insisting y, p, q 

continuous gives approximately (by continuity) [𝑦′]−𝜀𝜀 + [𝑝(0)𝑦]−𝜀
𝜀 + ∫ 𝑞(0)𝑦𝑑𝑥

𝜀

−𝜀
= 1. We see that as 

earlier, [𝑦′]−𝜀𝜀  must be the only term that survives as 𝜀 → 0, thus we see that y’ must be discontinuous. 
The y, p, q continuous condition ensures that 𝑝(𝑥)𝑦, 𝑞(𝑥)𝑦 are bounded near 0 so the other terms 
indeed vanish. And also if y is not continuous y’ will behave like a delta and who knows about y’’. So it 
can be thought of as something “bouncing”. 



In the higher order case, we must ensure all but the last two derivatives of y we deal with are 
continuous, then the second to last one will be the discontinuous one, as above. 

Example: 𝑦′′ − 𝑦 = 3𝛿 (𝑥 − 𝜋

2
) under conditions 𝑦 = 0 at 𝑥 = 0, 𝜋. 

We need to solve this at either side of 𝜋
2

. We can solve 𝑦′′ − 𝑦 = 0 for 0 < 𝑥 < 𝜋

2
, where to satisfy the 

initial condition we need 𝑦 = 𝐴𝑠𝑖𝑛ℎ(𝑥). Similarly, in the other region, we must have 𝑦 = 𝐴𝑠𝑖𝑛ℎ(𝜋 − 𝑥). 

The A’s must be equal so that y is continuous at 𝜋
2

. Now we must solve for A. 

Now integrating both sides of the equation we have that for small 𝜀, we have the approximate 

condition from integrating both sides that [𝑦′]𝜋
2
−𝜀

𝜋

2
+𝜀
≈ 3. Therefore the derivative changes by 3 when we 

reach 𝜋
2

. Therefore we need −𝐴𝑐𝑜𝑠ℎ (𝜋
2
) − 𝐴𝑐𝑜𝑠ℎ (

𝜋

2
) = 3, so 𝐴 = − 3

2 cosh(
𝜋

2
)
. We can see the bouncy 

behavior in this diagram below. 

Image: Sketch of the solution above 

Now we will define H(x) as the heaviside step function: This is basically an antiderivative of the dirac 
delta function: More precisely, this is 0 for negative x, 1 for positive x, and undefined at x=0. 

Lecture 17: 

Heuristically, integrating smoothens a function and differentiating makes a function less smooth. By 
integrating we can go from the dirac delta function to the heaviside step function and then if we 

integrate that we get 1
2
(𝑥 + |𝑥|) (dropping constant) which can be called the ramp function, and now 

our function is continuous everywhere. The idea is integrating things make them be one more time 
differentiable. 

If we have H(x) on the right hand side of a differential equation with continuous coefficients and 
impose y continuous at x=0 then by integrating the equation and doing a similar argument to last 
lecture we see the discontinuity has to be in y’’. 

If we impose that y=0 for x<0 for the ODE y’’+py’+qy=H(x) then we have to find a solution to 
y’’+p(x)y’pq(x)y=1 for x>0 on condition y’, y=0 when x=0. Or more generally we can solve it in both 
regions such that y and y’ match at x=0 and conditions can be imposed to constrain the solutions. 

Recall from A level further maths that we can solve equations like 𝑎𝑢𝑛+2 + 𝑏𝑢𝑛+1 + 𝑐𝑢𝑛 = 𝑓(𝑛), and 
that in Level 6 we mentioned that we can derive the solutions using the same substitution method 
that we can do to derive the solution to ODE’s. 

These can actually arise if we try to approximate solutions to differential equations, ie 

𝑑2𝑦

𝑑𝑥2
|𝑥𝑛 ≈

𝑦(𝑥𝑛 + ℎ) + 𝑦(𝑥𝑛 − ℎ) − 2𝑦(𝑥𝑛)

ℎ2
 

Example: The fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, … where each one is the sum of the previous 2. 
We therefore have the discrete equation 𝑦𝑛+2 − 𝑦𝑛+1 − 𝑦𝑛 = 0 subject to 𝑦0, 𝑦1 = 1. The solutions to 



the characteristic equation are 1±√5
2

 so as we can show by substitution (Cf level 5, 6) the general 

solution is 𝐴 (1+√5
2
)
𝑛

+ 𝐵 (
1−√5

2
)
𝑛

. We can solve for constants to get the values for A and B. Usually, 

the value 1+√5
2

 is denoted φ, or the golden ratio. What ends up happening is we get 𝑦𝑛 =
1

√5
(𝜙𝑛+1 − (1 − 𝜙)𝑛+1). This is now a formula for the fibonacci numbers. A corrolary of this is that the 

𝜙𝑛+1 term dominates so the ratio between fibonacci numbers approaches φ in the limit. 

In coming lectures we will prove and apply more properties of series solutions to differential 
equations, which is useful when we cannot find closed form solutions. Meme about series solutions 
below: 

Image: A meme about series solutions. 

Lecture 18: 

We will now do some definitions that will seem arbitrary but they will make sense once we start doing 
stuff. 

Definition: 

An ordinary point is a point where the equation 𝑦′′ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 𝑓(𝑥) or 𝑦′ + 𝑝(𝑥)𝑦 = 𝑓(𝑥) has 
p, q, f analytic meaning it has a valid taylor series in an interval around the point we are considering. 
We know from level 6 that this implies the existence of valid series solutions. 

If we have an equation like 𝑟(𝑥)𝑦′′ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 𝑓(𝑥), then the point is ordinary provided that 
when we divide through by r(x) we still have coefficients that are analytic. 

If a point 𝑥0 is not an ordinary point it is a singular point. It is a regular singular point if and only if at 
that point the equation can be written as (𝑥 − 𝑥0)2𝑦′′ + 𝑝(𝑥)(𝑥 − 𝑥0)𝑦′ + 𝑞(𝑥)𝑦 = 𝑓(𝑥) with p, q and f 
analytic. Otherwise, we have an irregular singular point. 

If we have a singular point, we know what to do. We start with the initial conditions and can find our 
series solution by either successively differentiating the equation or by solving an equation for the next 
coefficient based on the previous two: I will show an example of this so you get what I mean. 

If 𝑦′′ + 𝑒𝑥𝑦′ + sin(𝑥) 𝑦 = 0 and 𝑦 = 1 + 2𝑥 + 𝑎𝑥2 +⋯ and we want to find a, here is what we can do: 

2𝑎 +⋯+ 𝑒𝑥(2 + ⋯) + sin(𝑥) (1 + 2𝑥 +⋯) = 0 



2𝑎 +⋯+ (1 + 𝑥 +
𝑥2

2
+⋯)(2 +⋯) + (𝑥 −

𝑥3

6
+⋯)(1 + 2𝑥 +⋯) = 0 

Solving for the constant coefficient (since we showed we can multiply power series), we get that a 
must equal -1 since it is 0 on the right hand side. Therefore 𝑦 = 1 + 2𝑥 − 𝑥2 +⋯ valid everywhere 
since the coefficients are valid everywhere. 

Notice the similarity between the equidimensional equations (ie, 𝑎𝑥2𝑦′′ + 𝑏𝑥𝑦′ + 𝑐𝑦 = 𝑓(𝑥))and 
regular singular points. 

Example: Lets look into (1 − 𝑥2)𝑦′′ − 2𝑥𝑦′ + 2𝑦 = 0 about x=0 . We can divide through to get          

𝑦′′ −
2𝑥

1−𝑥2
𝑦′ +

2

1−𝑥2
𝑦 = 0, where each of the coefficients have a valid taylor series for |x|<1, and thus 

(cf level 6) a series solution about x=0 must be valid for |x|<1. But we have singular points at 𝑥 = ±1 
which we want to classify. To check if 1 is a regular singular point, we know that therefore                    

(𝑥 − 1)2𝑦′′ −
(𝑥−1)22𝑥

1−𝑥2
𝑦′ +

2(𝑥−1)2

1−𝑥2
𝑦 = 0, and then (𝑥 − 1)2𝑦′′ − (𝑥 − 1) 2𝑥

1+𝑥
𝑦′ +

2(𝑥−1)

1+𝑥
𝑦 = 0, where we 

now see that the coefficients are analytic so we have a regular singular point. 

Example: (1 + √𝑥)𝑦′′ − 2𝑥𝑦′ + 2𝑦 = 0. We will look at − 2𝑥

1+√𝑥
 and 2

1+√𝑥
. About x=0, we see that the 

second derivative of −2𝑥
1+√𝑥

 is not defined at x=0 so we do not have an ordinary point. 

We need to now look at −2𝑥
2

1+√𝑥
 to check if we have a regular singular point, but this does not have a well 

defined third derivative about x=0. Therefore x=0 is an irregular singular point. 

Theorem (For those who are in my year at Cambridge, yes this is “that” theorem, which works for 
higher order linear equations but we will only prove or apply it for first or second order): 

The first part of the theorem says that if 𝑥 = 𝑥0 is an ordinary point of a linear ODE, then there are two 
linearly independent power series solutions, ie solutions of the form ∑ 𝑎𝑛(𝑥 − 𝑥0)

𝑛∞
𝑛=0  that are 

convergent in some interval around 𝑥0. We have already proven this in level 6 and have shown in 
lecture 12 furthermore that it must be that every solution is of this form locally. 

The second part of the theorem says that if 𝑥 = 𝑥0 is a regular singular point and the ODE has 0 on the 
right hand side, ie no forcing term, then there is at least one solution of the form ∑ 𝑎𝑛(𝑥 − 𝑥0)

𝑛+𝜎∞
𝑛=0  

for some 𝜎 (Real or complex: The lecturer said real but I was the one who got him to correct it!) which 
is valid in an interval around 𝑥0 but not necessarily valid at 𝑥0. This is the same as                                    
(𝑥 − 𝑥0)

𝜎 ∑ 𝑎𝑛(𝑥 − 𝑥0)
𝑛∞

𝑛=0 , where 𝜎 is real or complex and 𝑎0 = 0. This is called a frobenius series. 
There is no gurantee that we have two linearly independent solutions of this form, but we will come 
back to this point. 

This part is not surprising since the regular singular points were similar to the equidimensional 
equations so it makes sense that the form of the series solutions is also similar. 

We would like to be able to say that if we solve for the coefficients the resulting series we get is 
actually valid in an interval. Therefore we will prove the second part using a proof almost identical to 
what we did for the first part in level 6. 

Proof of the second part: Lets shift everything over so that 𝑥0 = 0. Then we have                                  
𝑥2𝑦′′ + 𝑝(𝑥)𝑥𝑦′ + 𝑞(𝑥)𝑦 = 0. Lets suppose 𝑦 = 𝑥𝜎 ∑𝑎𝑛𝑥𝑛. Let 𝑝 = ∑𝑏𝑛𝑥𝑛 , 𝑞 = ∑𝑐𝑛𝑥𝑛. Then we can 



differentiate y inside its radius of convergence (which we will show later is the common radius of 
congergence of p and q). We can write: 

𝑦 = 𝑎0𝑥
𝜎 + 𝑎1𝑥

𝜎+1 + 𝑎2𝑥
𝜎+2 +⋯ 

𝑥𝑦′ = 𝜎𝑎0𝑥
𝜎 + (𝜎 + 1)𝑎1𝑥

𝜎+1 + (𝜎 + 2)𝑎2𝑥
𝜎+2 +⋯ 

𝑥2𝑦′′ = 𝜎(𝜎 − 1)𝑎0𝑥
𝜎 + (𝜎 + 1)𝜎𝑎1𝑥

𝜎+1 + (𝜎 + 2)(𝜎 + 1)𝑎2𝑥
𝜎+2 +⋯ 

Since we need 𝑥2𝑦′′ + 𝑝(𝑥)𝑥𝑦′ + 𝑞(𝑥)𝑦 = 0, we know that if such a series solution exists, then the 𝑥𝜎  
term must satisfy 𝜎(𝜎 − 1)𝑎0𝑥𝜎 + 𝑏0𝜎𝑎0𝑥𝜎 + 𝑐0𝑎0𝑥𝜎 = 0. But by assumption 𝑎0 is not 0. We now get 
the indicial equation 𝜎(𝜎 − 1)𝑎0 + 𝑏0𝜎 + 𝑐0 = 0. Therefore if such a solution exists, there are two 
possible values of 𝜎. Note that at an ordinary point if we write it in that equidimensional form then we 
will have 𝑏0 = 0 = 𝑐0 and the roots will be 0 and 1, meaning we will  

For now we will consider the larger root if they are real, or any root if they are complex conjugate pairs. 

We want to solve for 𝑎𝑛, and we will have to solve an equation by equating the 𝑥𝑛+𝜎 such as the 
following: 

𝑎𝑛[(𝜎 + 𝑛)(𝜎 + 𝑛 − 1) + 𝑏0(𝜎 + 𝑛) + 𝑐0] + 𝑠𝑡𝑢𝑓𝑓 = 0, which we can solve provided the stuff in the 
brackets is not zero. This is not a problem since we are picking the larger root of the indicial equation 
or a complex root – there won’t ever be a root bigger by an integer. However, we will return to the case 
that the roots differ by an integer or are the same, as in the other cases we see that we have two 
linearly independent series solutions of these forms, but that case is harder. But in this case where 
the roots are not degenerate, we only need to deal with convergence issues then we will be done – 
since we have assumed convergence when doing all of this manipulation of the series. 

Proposition: Frobenius series actually converge inside the common radius of convergence of the 
coefficients of the ODE, just like ordinary series solutions at ordinary points. 

Proof: This is exactly like the level 6 proof of series solutions for the ordinary case, as we will see. We 
will again assume we can differentiate power series since once we show that it converges with this 
algebraic derivative we know that it converges with the true derivative.  

Setup: Lets start with an equation of the form 𝑥2𝑦′′ + 𝑥𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 0 where 𝑝(𝑥) = ∑𝑝𝑛𝑥𝑛,  

𝑞(𝑥) = ∑𝑞𝑛𝑥
𝑛, and lets pick any root ϭ of the indicial equation. Then we will look for a solution of the 

form 𝑦 = 𝑥𝜎 ∑𝑐𝑛𝑥𝑛 with 𝑐0 ≠ 0. Let R be the common radius of convergence of p and q, then we want 
to show that the series ∑𝑐𝑛𝑥𝑛  converges for every |x|<R. We know already the following: 

- 𝑄(𝑥)𝑦 = (∑ 𝑞𝑘𝑥
𝑘∞

𝑘=0 )(∑ 𝑐𝑛𝑥
𝑛+𝜎∞

𝑛=0 ) 
- 𝑥𝑦′ = ∑ (𝑛 + 𝜎)𝑐𝑛𝑥

𝑛+𝜎∞
𝑛=0  

- Therefore, 𝑃(𝑥)𝑥𝑦′ = (∑ 𝑝𝑘𝑥
𝑘∞

𝑘=0 )(∑ (𝑛 + 𝜎)𝑐𝑛𝑥
𝑛+𝜎∞

𝑛=0 ) 
- 𝑥2𝑦′′ = ∑ (𝑛 + 𝜎)(𝑛 + 𝜎 − 1)𝑐𝑛𝑥

𝑛+𝜎∞
𝑛=0  

We know from previous work (Level 6 -> Pure maths -> Power series properties for an explanation) that 
it must be the case that the coefficient of 𝑥𝑛+𝜎 is as follows: 

- 𝑥𝑃(𝑥)𝑦′ = (∑ [∑ 𝑝𝑘𝑐𝑛−𝑘
𝑛
𝑘=0 (𝑛 − 𝑘 + 𝜎)]𝑥𝑛+𝜎∞

𝑛=0 ) 
- 𝑄(𝑥)𝑦 = (∑ [∑ 𝑞𝑘𝑐𝑛−𝑘

𝑛
𝑘=0 ]𝑥𝑛+𝜎∞

𝑛=0 ) 

Now we can use the differential equation to equate coefficients: 



(𝑛 + 𝜎)(𝑛 + 𝜎 − 1)𝑐𝑛 +∑(𝑝𝑝𝑐𝑛−𝑝(𝑛 − 𝑝 + 𝜎) + 𝑞𝑝𝑐𝑛−𝑝)

𝑛

𝑝=0

= 0 

Pulling out the p=0 term, 

(𝑛 + 𝜎)(𝑛 + 𝜎 − 1)𝑐𝑛 + 𝑐𝑛(𝑝0(𝑛 + 𝜎) + 𝑞0) +∑(𝑝𝑝𝑐𝑛−𝑝(𝑛 − 𝑝 + 𝜎) + 𝑞𝑝𝑐𝑛−𝑝)

𝑛

𝑝=1

= 0 

 

𝑐𝑛((𝑛 + 𝜎)(𝑛 + 𝜎 − 1) + 𝑝0(𝑛 + 𝜎) + 𝑞0) = −∑(𝑝𝑝𝑐𝑛−𝑝(𝑛 − 𝑝 + 𝜎) + 𝑞𝑝𝑐𝑛−𝑝)

𝑛

𝑝=1

 

Lets define (𝑛 + 𝜎)(𝑛 + 𝜎 − 1) + 𝑝0(𝑛 + 𝜎) + 𝑞0 to be 𝐴𝑛 and write 

𝑐𝑛𝐴𝑛 = −∑ (𝑝𝑝𝑐𝑛−𝑝(𝑛 − 𝑝 + 𝜎) + 𝑞𝑝𝑐𝑛−𝑝)
𝑛
𝑝=1  (We will call this (*)) 

Here the point is that the 𝑛2 stuff in 𝐴𝑛 dominates as n gets large, and the finite values of 𝜎 or 𝑝0 or 𝑞0 
become negligable. In particular, because of this there exists a constant C such that we have 

|𝐴𝑛| ≥ 𝐶(𝑛 + 1)
2 if n is large enough. We just need n large enough because these radius of 

convergence arguments only care about what happens to n when it gets large, and whatever we want 
can happen in the first hundred terms, or first million terms, or whatever. 

Now pick any x with |x|<R and set 𝐴𝑟
(1) ≔ ∑ |𝑝𝑝||𝑥|

𝑝∞
𝑝=0  and 𝐴𝑟

(0) ≔ ∑ |𝑞𝑝||𝑥|
𝑝∞

𝑝=0 , which are all finite 
because of the fact that we are inside the common radius of convergence. 

Define 𝑀𝑛 ≔ max
0≤𝑘≤𝑛

|𝑐𝑘||𝑥|
𝑘. Take (*) and take absolute values and multiply by |𝑥|𝑛 to get 

|𝑐𝑛||𝐴𝑛||𝑥|
𝑛 =∑|𝑝𝑝(𝑛 − 𝑝 + 𝜎) + 𝑞𝑝||𝑐𝑛−𝑝||𝑥|

𝑛

𝑛

𝑝=1

 

Now note that |𝑛 − 𝑝 + 𝜎| ≤ |𝑛 − 𝑝| + |𝜎| ≤ 𝑛 + |𝜎| by the triangle inequality, so certainly (by the 
triangle inequality again 

|𝑐𝑛||𝐴𝑛||𝑥|
𝑛 ≤ (𝑛 + |𝜎|)∑|𝑝𝑝||𝑐𝑛−𝑝||𝑥|

𝑛

𝑛

𝑝=1

+∑|𝑞𝑝||𝑐𝑛−𝑝||𝑥|
𝑛

𝑛

𝑝=1

 

|𝑐𝑛||𝐴𝑛||𝑥|
𝑛 ≤ (𝑛 + |𝜎|)∑|𝑝𝑝||𝑐𝑛−𝑝||𝑥|

𝑛−𝑝|𝑥|𝑝
𝑛

𝑝=1

+∑|𝑞𝑝||𝑐𝑛−𝑝||𝑥|
𝑛−𝑝|𝑥|𝑝

𝑛

𝑝=1

 

Now we use the definition of M and the A’s (noting that the n-p power only goes up to n-1): 

|𝑐𝑛||𝐴𝑛||𝑥|
𝑛 ≤ (𝑛 + |𝜎|)𝑀𝑛−1𝐴𝑟

(1)
+𝑀𝑛−1𝐴𝑟

(0) 

Also, by a previous inequality, 

𝐶(𝑛 + 1)2|𝑐𝑛||𝑥|
𝑛 ≤ |𝑐𝑛||𝐴𝑛||𝑥|

𝑛 ≤ (𝑛 + |𝜎|)𝑀𝑛−1𝐴𝑟
(1)
+𝑀𝑛−1𝐴𝑟

(0) 

And dividing through gives 



|𝑐𝑛||𝑥|
𝑛 ≤ 𝑀𝑛−1 (

(𝑛 + |𝜎|)𝐴𝑟
(1)

𝐶(𝑛 + 1)2
+
𝑀𝑛−1𝐴𝑟

(0)

𝐶(𝑛 + 1)2
) 

For all large enough n, 𝑛+|𝑚|
(𝑛+1)2

≤
𝐾

𝑛+1
 for some constant K. This is because the left hand side times n+1 

as n gets large asymptotically approaches 1 and therefore, if say K=2 we eventually get a bound. 

Now note that 𝑀𝑛 −𝑀𝑛−1 ≤ |𝑐𝑛||𝑥|𝑛 since the amount 𝑀𝑛 can increase by from 𝑀𝑛−1 is no more than 
the new term in our list of terms we are finding a maximum from, since they are all positive. 

So, 𝑀𝑛 −𝑀𝑛−1 ≤ 𝑀𝑛−1 (
(𝑛+|𝜎|)𝐴𝑟

(1)

𝐶(𝑛+1)2
+
𝑀𝑛−1𝐴𝑟

(0)

𝐶(𝑛+1)2
) so 𝑀𝑛 ≤ 𝑀𝑛−1 (1 +

𝐵

𝑛+1
) for some finite constant B. 

Now we know that 𝑀𝑛+2 ≤ 𝑀1∏ (1 +
𝐵

𝑘+3
)𝑛

𝑘=0 ≤ 𝑀1∏ (1 +
𝐵

𝑘+2
)𝑛

𝑘=0 . Although these inequalities used 

assumed n was “large enough”, we just have to have multiplication by a constant to deal with the 
terms that are not large enough, so it will not affect the radius of convergence argument. 

Now as before, ln(𝑀𝑛+2) ≤ ln(𝑀1) + ∑ ln (1 +
𝐵

𝑘+2
)𝑛

𝑘=0 . By the same proof as in level 6 series 

solutions with 𝑆𝑛, we have that 𝑀𝑛 ≤ 𝐶𝑛𝑎 for constants c and a, and we again use the inequalities 

|𝑐𝑛|
1/𝑛 ≤ (

𝑀𝑛
|𝑥|𝑛

)

1
𝑛
≤ (

𝑐𝑛𝑎

|𝑥|𝑛
)

1
𝑛

=
𝑐1/𝑛𝑛𝑎/𝑛

|𝑥|
 

Again, 𝑐1/𝑛𝑛𝑎/𝑛 → 1 as n gets large (You can take logs and use L’hopital to demonstrate this). We know 

from power series properties (Level 6) that the radius of convergence is given by 1

lim sup
𝑛→∞

|𝑐𝑛|1/𝑛
. But this 

is at least |x| for any |x|<R, because lim sup
𝑛→∞

|𝑐𝑛|
1/𝑛 ≤

1

|𝑥|
 by the inequalities above, so done. 

For completeness, I will mention the first order differential equations case and prove the frobenius 
series converges there: 

𝑥𝑦′ + 𝑝(𝑥)𝑦 = 0 with 𝑝(𝑥) = ∑ 𝑝𝑛𝑥
𝑛∞

𝑛=0 , so 𝑦
′

𝑦
= −

𝑝(𝑥)

𝑥
= −

𝑝0

𝑥
+ (𝑃𝑜𝑤𝑒𝑟 𝑠𝑒𝑟𝑖𝑒𝑠), so integrating gives 

ln(𝑦) = −𝑝0 ln(𝑥) + (𝑃𝑜𝑤𝑒𝑟 𝑠𝑒𝑟𝑖𝑒𝑠), so 𝑦 = 𝐶𝑥−𝑝0exp (𝑃𝑜𝑤𝑒𝑟 𝑠𝑒𝑟𝑖𝑒𝑠) where if the power series has 
radius of convergence R so does the power series of its exponential (since the exponential converges 
everywhere – yet again see level 6 power series properties). So we do have a frobenius solution. 

Now we have to discuss the last case. If we have an irregular singular point, the series solution 
method may fail completely so what happens is beyond this course. The regular singular point with 
roots that differ by an integer is something we will deal with next time. 

Example: Lets find a series solution of (1 − 𝑥2)𝑦′′ − 2𝑥𝑦′ + 2𝑦 = 0. For convenience, we multiply 
through by 𝑥2 to get (1 − 𝑥2)𝑥2𝑦′′ − 2𝑥3𝑦′ + 2𝑥2𝑦 = 0. We can substitute in the series form and its 
derivatives to get: 

(1 − 𝑥2)∑ 𝑎𝑛𝑛(𝑛 − 1)𝑥
𝑛

∞

𝑛=2

− 2∑𝑎𝑛𝑛𝑥
𝑛+2

∞

𝑛=1

+ 2∑𝑎𝑛𝑥
𝑛+2

∞

𝑛=0

= 0 

Splitting this further and re-indexing we get 



∑𝑎𝑛𝑛(𝑛 − 1)𝑥
𝑛

∞

𝑛=2

−∑𝑎𝑛−2(𝑛 − 2)(𝑛 − 3)𝑥
𝑛

∞

𝑛=4

− 2∑𝑎𝑛−2(𝑛 − 2)𝑥
𝑛

∞

𝑛=3

+ 2∑𝑎𝑛−2𝑥
𝑛

∞

𝑛=2

= 0 

 

We can now read things off easily and equate coefficients: For 𝑛 ≥ 2, 

𝑎𝑛𝑛(𝑛 − 1) − 𝑎𝑛−2(𝑛 − 2)(𝑛 − 3) − 2𝑎𝑛−2(𝑛 − 2) + 2𝑎𝑛−2 = 0 

Now lets sipmlify (this is just doing stuff with quadratics) 
𝑎𝑛𝑛(𝑛 − 1) − 𝑎𝑛−2𝑛(𝑛 − 3) = 0 

We can cancel n since it is non-zero to get 

𝑎𝑛(𝑛 − 1) − 𝑎𝑛−2(𝑛 − 3) = 0 

Note that 𝑎0 and 𝑎1 are free to vary before we can determine the rest of the coefficients. By how the 
equation looks, we will want to determine the odd and even terms separately. 

By considering odd terms, we see that all odd terms except for 1 must be 0 from the equation above. 
So we have one solution of the form 𝑦 = 𝑎1𝑥. 

The even terms, we see that 𝑎𝑛 = (
𝑛−3

𝑛−1
) 𝑎𝑛−2 = (

𝑛−5

𝑛−3
) (

𝑛−3

𝑛−1
) 𝑎𝑛−4 = ⋯ But we have the n-3’s cancelling 

and will have similar for the rest of the terms: When we get up to n, we will have 𝑎𝑛 = −
1

𝑛−1
𝑎0. We 

have a solution of the form 𝑦 = 𝑎0 (1 − 𝑥2 −
𝑥4

3
−
𝑥6

5
−⋯). Recall that                                                        

ln(1 ± 𝑥) = ±𝑥 −
𝑥2

2
±
𝑥3

3
−
𝑥4

4
+⋯. So we can check that 𝑦 = 𝑎0 (1 −

𝑥

2
(ln(1 + 𝑥) − ln(1 − 𝑥))) =

𝑎0 (1 −
𝑥

2
ln (

1+𝑥

1−𝑥
)). Now we have two linearly independent solutions, so amazingly we can actually 

solve the equation in closed form to get 𝑦 = 𝑎1𝑥 + 𝑎0 (1 −
𝑥

2
ln (

1+𝑥

1−𝑥
)). We see that near x=1 this 

becomes undefined and we have logarithmic behavior. It turns out we can get logarithmic behavior at 
regular singular points and we will see this next lecture – This happens exactly in the roots repeated or 
differing by an integer case. 

Lecture 19: 

Example: Consider 4𝑥𝑦′′ + 2(1 − 𝑥2)𝑦′ − 𝑥𝑦 = 0. We can multiply by x to get it in “equidimensional” 
form so that 4𝑥2𝑦′′ + 2(1 − 𝑥2)𝑥𝑦′ − 𝑥2𝑦 = 0, so we see that x=0 is a regular singular point. 

Now lets try a solution 𝑦 = 𝑥𝜎 ∑ 𝑎𝑛𝑥
𝑛∞

𝑛=0 . We get 

 ∑ 𝑎𝑛𝑥
𝑛+𝜎[4(𝑛 + 𝜎)(𝑛 + 𝜎 − 1) + 2(1 − 𝑥2)(𝑛 + 𝜎) − 𝑥2]∞

𝑛=0 = 0 

We will look at the 𝑥𝜎  coefficient and try to equate it, which gives the indicial equation 

 𝑎0(4𝜎(𝜎 − 1) + 2𝜎) = 0 

Since we assume 𝑎0 is not 0, we therefore get that 𝜎 is 0 or 1
2

. Because of what we saw last lecture, we 

see that because these roots do not differ by an integer, there are two linearly independent series 
solutions that are of this form. 

Now lets find the 𝑥𝜎+1 coefficient: We get: 

𝑎1[4(𝜎 + 1)𝜎 + 2(𝜎 + 1)] + 𝑎0[0] = 0, as those are all the terms that contribute. 



Thus 𝑎1 = 0. 

Now lets think about 𝑥𝑛+𝜎 for 𝑛 ≥ 2. Since the taylor series of the coefficients of our ODE are finite, we 
can get a recurrence relation that we can use to quickly find our coefficients (although I’m not sure if 
there is a closed form for them). We will get that 

 𝑎𝑛[4(𝑛 + 𝜎)(𝑛 + 𝜎 − 1) + 2(1 − 𝑥2)(𝑛 + 𝜎) − 𝑥2] + 𝑎𝑛−2[−2(𝑛 − 2 + 𝜎) − 1] = 0, as we have to 
contribute all products of terms that give a multiple 𝑥𝑛+𝜎. 

We can write 2(𝑛 + 𝜎)(2𝑛 + 2𝜎 − 1)𝑎𝑛 = (2𝑛 + 2𝜎 − 3)𝑎𝑛−2. (†) 

Now lets plug in the possible values of 𝜎 into † 

Case 1: 𝜎 = 0 

𝑎𝑛 =
(2𝑛 − 3)

2𝑛(2𝑛 − 1)
𝑎𝑛−2 

So we can find that 𝑎2 =
1

12
𝑎0, 𝑎4 =

5

56
𝑎2 =

5

672
𝑎0, etc. And all odd terms are 0. 

𝑦 = 𝑎0 [1 +
𝑥2

12
+
5𝑥4

672
+⋯ ] 

And from the recurrence relation we see that the ratio between consecutive terms approaches 0, 
which means it converges everywhere - this is certainly what we expect because the coefficients of 
the ODE converges everywhere so the proof last lecture implies this must work! 

Case 2: 𝜎 = 1

2
 

𝑎𝑛 =
(2𝑛 − 2)

2𝑛(2𝑛 + 1)
𝑎𝑛−2 =

𝑛 − 1

𝑛(2𝑛 + 1)
𝑎𝑛−2 

We will then get, and I won’t go through the calculations, but we get that 

𝑦 = 𝑎0𝑥
1
2 [1 +

1

10
𝑥2 +

1

120
𝑥4 +⋯] 

And similarly all odd terms are 0. 

We found this time two linearly independent frobenius series solutions. As we saw when we derived 
this last lecture, this happens if the roots do not differ by an integer. If the roots do differ by an integer, 
we will investigate further. 

Lets see first what happens if the root difference is a non-zero integer. In this case, we will get one 
series solution 𝑦1 with the larger root that looks like (𝑥 − 𝑥0)𝜎 ∑ 𝑎𝑛(𝑥 − 𝑥0)

𝑛∞
𝑛=0  since we won’t have a 

problem. 

Now we can use reduction of order to try to derive a second solution. 

Suppose 𝑦1 satisfies 𝑥2𝑦1′′ + 𝑥𝑝(𝑥)𝑦1′ + 𝑞(𝑥)𝑦1 = 0, then we will substitute 𝑦 = 𝑦1𝑢(𝑥). This gives the 

equation 𝑥2(𝑦1𝑢(𝑥))
′′
+ 𝑥𝑝(𝑥)(𝑦1𝑢(𝑥))

′
+ 𝑞(𝑥)𝑦1𝑢(𝑥) = 0. Lets expand this out: 

𝑥2𝑦1𝑢
′′ + 2𝑥2𝑦1

′𝑢′ + 𝑥2𝑦1
′′𝑢 + 𝑥𝑝(𝑥)𝑦1

′𝑢 + 𝑥𝑝(𝑥)𝑦1𝑢′ + 𝑞(𝑥)𝑦1𝑢 = 0 

But 𝑦1 satisfies the ODE so 



𝑥2𝑦1𝑢
′′ + 2𝑥2𝑦1

′𝑢′ + 𝑥𝑝(𝑥)𝑦1𝑢′ = 0 

Now for 𝑥 ≠ 0 

𝑢′′ +
2𝑦1

′

𝑦1
𝑢′ +

𝑝(𝑥)

𝑥
𝑢′ = 0 

Note that since 𝑦1 is a power series, 2𝑦1
′

𝑦1
=
2𝜎1

𝑥
+ (𝑇𝑎𝑦𝑙𝑜𝑟 𝑠𝑒𝑟𝑖𝑒𝑠) where 𝜎1 is the other root so it 

integrates to 2 ln(𝑥) + (𝑇𝑎𝑦𝑙𝑜𝑟 𝑠𝑒𝑟𝑖𝑒𝑠). 𝑝
(𝑥)

𝑥
=
𝑝0

𝑥
+ (𝑇𝑎𝑦𝑙𝑜𝑟 𝑠𝑒𝑟𝑖𝑒𝑠) since p is analytic at x=0. Thus we 

can integrate and use an integrating factor to get 𝑢′ = 𝐶𝑒𝑥𝑝(−(2𝜎1 + 𝑝0) ln(𝑥) + (𝑇𝑎𝑦𝑙𝑜𝑟 𝑠𝑒𝑟𝑖𝑒𝑠)) . 
Therefore, 𝑢′ = 𝑥−2𝜎1−𝑝0(𝑇𝑎𝑦𝑙𝑜𝑟 𝑠𝑒𝑟𝑖𝑒𝑠) since the exponential of a power series is still a power series 
valid on the same interval. We can use standard facts about roots of quadratics to get                          
𝜎1 + 𝜎2 = 1 − 𝑝0, 𝜎1𝜎2 = 𝑞0. We know now that 1 − 2𝜎1 − 𝑝0 = 𝜎1 + 𝜎2 − 2𝜎1 = 𝜎2 − 𝜎1, which is the 
root difference. Therefore 𝑢′ = 𝑥𝜎2−𝜎1−1(𝑇𝑎𝑦𝑙𝑜𝑟 𝑠𝑒𝑟𝑖𝑒𝑠). 

We can now integrate u, and here we will assume that the root difference is an integer. We have 
absolute convergence on the interval we care about and thus can apply the dominated convergence 
theorem (level 6 technical results) to swap sums and integrals. 

We have 𝑢 = ∑ 𝑐𝑛 ∫𝑥
𝑛+𝜎2−𝜎1−1𝑑𝑥∞

𝑛=0 . If 𝜎2 − 𝜎1 is sometimes an integer,  then since by assumption we 
know 𝜎2 ≤ 𝜎1 the power of x in the integral will sometimes be -1 and we will get a log term.  

We deduce by reversing the substitution that for the smaller root, we will have 

𝑦2 = (𝑥 − 𝑥0)
𝜎∑𝑏𝑛(𝑥 − 𝑥0)

𝑛

∞

𝑛=0

+ 𝑐𝑦1ln (𝑥 − 𝑥0) 

Where 𝑐 is a constant that can be determined, but may be very difficult to determine as we have seen 
from the derivation above. 

Note that if we work with the smaller root, we will get a recurrence relation for the coefficients, and 
the problem happens when we reach the larger root, as we will get 0𝑎𝑘 = 𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔. If this 
something is zero, we can pick 𝑎𝑘 to be whatever we want and we have a second series solution. 
Either way, however, we know that a solution of the above form exists with the smaller root and so we 
have two linearly independent solutions (we will prove soon that this holds for frobenius type 
solutions as this is not obvious). Therefore there is a log term exactly when this “something” is not 
zero. 

If 𝜎2 = 𝜎1 the log term will never have a constant of 0 at the front, but otherwise it might – such as in 
the case where we try to write an ordinary point in equidimensional form and get roots 0 and 1, but we 
clearly don’t have a logarithmic solution in the ordinary point case, so the constant must be 0. Here is 
a more direct proof of this: 

𝑦′′ + 𝑝𝑦′ + 𝑞𝑦 = 0 ⇒ 𝑥2𝑦′′ + 𝑥(𝑥𝑝)𝑦′ + (𝑥2𝑞)𝑦 = 0, so the indicial equation is ϭ(ϭ-1)+0ϭ+0=0 which 
has roots 0 and 1. 

Example: 𝑥2𝑦′′ − 𝑥𝑦 = 0 where x=0 is a regular singular point. The roots of the indicial equation are 0 
and 1. We get 



∑[𝑎𝑛(𝑛 + 𝜎)(𝑛 + 𝜎 − 1)𝑥
𝑛+𝜎 − 𝑎𝑛𝑥

𝑛+𝜎+1]

∞

𝑛=0

= 0 

For 𝜎 = 1, we can see that by equating coefficients, although I won’t go through the details, we get 

that 𝑎𝑛𝑛(𝑛 + 1) = 𝑎𝑛−1. Therefore 𝑎𝑛 =
𝑎0

𝑛!(𝑛+1)!
 so we have a solution 𝑦1 = 𝑎0𝑥 (1 +

𝑥

2
+
𝑥2

12
+⋯) 

If 𝜎 = 0, we cannot solve for coefficients.  Therefore 𝑦2 = ∑ 𝑏𝑛𝑥𝑛
∞
𝑛=0 + 𝑐𝑦1ln (𝑥). 

We have now shown that we have two linearly independent solutions of “frobenius type” regardless of 
the case, however this does NOT imply uniqueness because we are not at a point of the form                
𝑦′′ + 𝑝𝑦′ + 𝑞𝑦 = 0 with p and q continuous. But for completeness I will prove that every solution is of 
this form. But be careful – This is true with a caveat. 

Proof: Since this holds on any closed interval that avoids the regular singular point, it holds in general 
on the open interval (-R, 0) or (0, R) where R is the radius of convergence: For any point in these 
intervals there are only 2 linearly independent solutions in a closed interval around that point, but the 
frobenius solutions account for those so there can’t be any others. Since the constants in front of the 
frobenius solutions that determine these solutions are the same in overlapping intervals, they are the 
same on the whole open interval. The caveat is that this is true on one side of a regular singular point 
that is not an ordinary point – we can absolutely have a different solution on both sides. unless we 
force the solution to work in complex numbers. For example, consider the differential equation 
𝑥2𝑦′′ − 5𝑥𝑦′ + 9𝑦 = 0. The general solution as we would have said before is 𝑥3(𝐴 + 𝐵𝑙𝑛(𝑥)), but it 
turns out that 𝑥2|𝑥| is technially a legitimate third solution in the sense that it satisfies the ODE – only 
its third derivative doesn’t exist but its first two do and really are 0 at x=0 and importantly, it is not of 
frobenius type – it is an almost-frobenius solution with different constants on each side of 0. The 
reason this can happen is that the theorem about two solutions assumes continuity when we divide 
through by the y’’ coefficient, which does not happen in any interval containing x=0, and also in the 
derivation of the solution to equidimensional equations our substitution z=ln(x) only gave us positive 
number solutions if we want to force real numbers. We could use a substitution like z=ln(-x), but we 
will have the same problem. 

Lecture 20: 

We will go back to multivariable functions, see lecture 4 if you need to remind yourself of our earlier 
work on this. 

Now we will assume that functions we are working with have all partial derivatives continuous so that 
it is differentiable in the lecture 4 sense and we can define gradient vectors or gradient matrices. 

Review of a definition from L4 (Directional derivative): If we have a function from ℝ𝑚 → ℝ, then the 
input can be thought of as a vector. The directional derivative is then the rate that the function 
changes as we move along a certain vector, where the directional derivative with basis vectors is the 
partial derivatives. 

Note that in the ℝ𝑚 → ℝ case, it has a partial derivative matrix D (see lecture 4) and the directional 
derivative with respect to a vector x is Dx, which in this case is the same as D.x. 

We write Df as ∇f, so we call this “D” vector Grad or ∇. 



We can by the chain rule write df = ds. ∇f where ds is the vector (
𝑑𝑥
𝑑𝑦
). Now we will assume s that we 

are differentiating with respect to is a unit vector. 

Remark: ∇f is the direction of steepest ascent of f as a point.This is because s. ∇f is maximized when s 
is in the same direction as ∇f by dot product properties. 

Rmark: |∇f| is the maximuum slope of f at a point. This is because |∇f| = |𝑠. ∇f | which is exactly the 
maximum slope since ŝ is a unit vector parallel to ∇f. 

Remark: if 𝑠 is parallel to contours of f (curves of constant f) then 𝑑𝑓
𝑑𝑠
= 0. 

Definition: A stationary point is where ∇f = 0, ie all directional derivatives are 0. In 3D we have local 
maxima and local minima, or saddle points. I will show image examples: 

 Image: Local minimum, local maxima are the obvious analog. 
Heuristically, contours are usually elliptical around such a point. 

Image: Saddle stationary point. Heuristically, contours are usually 
hyperola-like around such a point. In a contour plot, contours will cross at a saddle point and look 
hyperbolic around it. As an example, this is exactly what the contours 𝑥2 − 𝑦2 = 𝑐 will do. 

In 3D, The contours often cross if we are at a stationary point that is not a local minimum or 
maximum, ie a saddle point. However, this is not always the case. 

Now assume further that f is a function which is analytic when we move it along any line. In 3D, or 
higher dimensions, we want to consider how f varies along the line 𝑥(𝑡) = 𝑥0 + 𝑡𝑠. This is the usual 

taylor series: 𝑓 = 𝑓(𝑥0) + 𝑡(𝑓𝑠) +
1

2
𝑡2(𝑓𝑠𝑠) + ⋯ = 𝑓(𝑥0) + 𝑡(𝑠. 𝛻𝑓) +

1

2
𝑡2(𝑠. 𝛻(𝑠. 𝛻𝑓)) + ⋯ 

We can unpack these more: 

𝑓 = 𝑓(𝑥0) + 𝑡 (𝑠𝑥
𝜕𝑓

𝜕𝑥
+ 𝑠𝑦

𝜕𝑓

𝜕𝑦
) +

1

2
𝑡2 (𝑠𝑥

𝜕

𝜕𝑥
+ 𝑠𝑦

𝜕

𝜕𝑦
(𝑠𝑥

𝜕𝑓

𝜕𝑥
+ 𝑠𝑦

𝜕𝑓

𝜕𝑦
)) +⋯ 

𝑓 = 𝑓(𝑥0) + 𝑡 (𝑠𝑥
𝜕𝑓

𝜕𝑥
+ 𝑠𝑦

𝜕𝑓

𝜕𝑦
) +

1

2
𝑡2 (𝑠𝑥

2
𝜕2𝑓

𝜕𝑥2
+ 𝑠𝑦

2
𝜕2𝑓

𝜕𝑦2
+ 2𝑠𝑥𝑠𝑦

𝜕2𝑓

𝜕𝑥𝜕𝑦
) +⋯ 



In the term 𝑠𝑥2
𝜕2𝑓

𝜕𝑥2
+ 𝑠𝑦

2 𝜕
2𝑓

𝜕𝑦2
+ 2𝑠𝑥𝑠𝑦

𝜕2𝑓

𝜕𝑥𝜕𝑦
 we can write it as (𝑠𝑥 𝑠𝑦) (

𝑓𝑥𝑥 𝑓𝑥𝑦
𝑓𝑦𝑥 𝑓𝑦𝑦

) (
𝑠𝑥
𝑠𝑦
) where the matrix in 

the middle is a symmetric matrix called the Hessian matrix. We assume all the second partial 
derivatives are continuous so that we can be allowed to do this. We will call this matrix H. 

We can write the thingy above as follows: 

𝑓 = 𝑓(𝑥0) + (𝑑𝑥
𝜕𝑓

𝜕𝑥
+ 𝑑𝑦

𝜕𝑓

𝜕𝑦
) +

1

2
(𝑑𝑥2

𝜕2𝑓

𝜕𝑥2
+ 𝑑𝑦2

𝜕2𝑓

𝜕𝑦2
+ 2𝑑𝑥𝑑𝑦

𝜕2𝑓

𝜕𝑥𝜕𝑦
) +⋯ 

Or we can write it in coordinate independent form where x is vectors: 

𝑓(𝑥0 + 𝑑𝑥) = 𝑓(𝑥0) + 𝑑𝑥. 𝛻𝑓 +
1

2
(𝑑𝑥𝑇𝐻𝑑𝑥) + ⋯ 

Where the derivatives and hessian matrix are evaluated at 𝑥0. 

Lecture 21: 

The hessian matrix is a symmetric matric so if 𝛻𝑓 is 0 then what happens is the following: 

𝑓(𝑥0 + 𝑑𝑥) = 𝑓(𝑥0) +
1

2
(𝑑𝑥′𝑇𝐷𝑑𝑥′) + ⋯ 

Where we diagonalize H (which we always can in this orthogonal way, see vectors and matrices). Then 
x’ is about a perpendicular set of axes that is not necessarily the standard one. 

Then we see that if D is all positive or all negative, we have a local extremum, but if D has some 
positive and some negative entries we have a saddle point. 

Definition: A matrix is positive definite if all its eigenvalues are >0. 

Proposition: An equivalent defintion asserts that 𝑥𝑇𝐻𝑥 > 0 for all non-zero x. 

Proof: 𝑥𝑇𝐻𝑥 = (𝑃𝑥)𝑇𝐷(𝑃𝑥) = (√𝐷𝑃𝑥)
𝑇
(√𝐷𝑃𝑥) = |√𝐷𝑃𝑥|

2
> 0 

Conversely, if 𝑥𝑇𝐻𝑥 > 0 for all x then so is (𝑃𝑥)𝑇𝐷(𝑃𝑥). Then if we pick x such that Px is any basis 
vector, we must get something positive, so D’s entries must be all positive. 

Where √𝐷 is the positive square root of everything in D. 

Definition: A matrix is negative definite if 𝑥𝑇𝐻𝑥 < 0 for all non-zero x. It is clear from this definition 
that this corresponds to a local maximum, and we will see shortly (same reason as above) this 
corresponds to all eigenvalues being negative. 

If x’ is the principal axes, then 𝑑𝑥′𝑇𝐷𝑑𝑥′ = 𝜆1𝑑𝑥1′
2
+ 𝜆2𝑑𝑥2

′ 2 +⋯𝜆𝑛𝑑𝑥𝑛
′ 2 

We now see that we are have a local maximum if all the eigenvalues are negative and a local minimum 
if all the eigenvalues are positive, since sufficiently close to the point the higher order terms will be 
smaller than this second derivative term. If some are 0 or some are negative and others are positive, 
further analysis is needed. 

If a matrix is neither of these it is indefinite. 

If all eigenvalues are non-zero but mixed signs we are guranteed to have a saddle point. 



If some eigenvalues are zero, we need higher terms in the taylor series to classify the stationary points 
– exactly as in the single variable case. 

Example: 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦4 has a global minimum at (𝑥, 𝑦) = (0,0). 𝛻𝑓 = (2𝑥, 4𝑦3). And we have that 

𝐻 = (
2 0
0 12𝑦2

). At 0, this is equal to 𝐻 = (2 0
0 0

), so this does not tell us what kind of point it is even 

though we know that it is a minimum. 

Definition: The signature of a matrix is the pattern of signs of the ordered subdeterminants of the 
leading principal minors of H. 

Example: For 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛), we consider the sign of the determinants 

|𝑓𝑥1𝑥1|, |
𝑓𝑥1𝑥1 𝑓𝑥1𝑥2
𝑓𝑥2𝑥1 𝑓𝑥2𝑥2

| , |

𝑓𝑥1𝑥1 𝑓𝑥1𝑥2 𝑓𝑥1𝑥3
𝑓𝑥2𝑥1 𝑓𝑥2𝑥2 𝑓𝑥2𝑥3
𝑓𝑥3𝑥1 𝑓𝑥3𝑥2 𝑓𝑥3𝑥3

| , … 

Theorem: 

i) A matrix is positive definite if and only if the signature is +, +, +, +,… 
ii) A matrix is negative definite if and only if the signature is -, +, -, +,… 

Proof: 

i) The forward implication is not too bad: For example with vectors like 𝑥 = (𝑥1, 𝑥2, 0, … ,0), 
𝑥𝑇𝐻𝑥 > 0 always by the hypothesis, but then notice that this is the same as replacing x with 
(𝑥1, 𝑥2) and H with its second principal minor. We need to show that if all principal minors 
have positive determinant then the matrix is positive definite. Starting with the first principal 
minor, it is positive definite since it is a positive number – this is trivial and there’s not much 
to show here. Note that if 𝐻𝑘 (which will denote the k’th principal minor) is positive definite 
and 𝐷𝑒𝑡(𝐻𝑘+1) > 0 then 𝐻𝑘+1 must have an even number of negative eigenvalues. Suppose 
that 𝐻𝑘+1 has two or more negative eigenvalues with associated eigenvectors u and v with 
components 𝑢𝑖 , 𝑣𝑖. These can be chosen to be orthogonal since they are eigenvectors of a 
real symmetric matrix with distinct eigenvalues. Consider now  𝑤 = 𝑣𝑘+1𝑢 − 𝑢𝑘+1𝑣  which 
we will consider to be a row vector which by construction has no k+1 component. It follows 
that 𝑤𝐻𝑘+1 = 𝑣𝑘+1𝑢𝐻𝑘+1 − 𝑢𝑘+1𝑣𝐻𝑘+1. So, 

𝑤𝐻𝑘+1𝑤
𝑇 = (𝑣𝑘+1)

2𝑢𝐻𝑘+1𝑢
𝑇 − (𝑣𝑘+1)(𝑢𝑘+1)𝑢𝐻𝑘+1𝑣

𝑇 + (𝑣𝑘+1)(𝑢𝑘+1)𝑣𝐻𝑘+1𝑢
𝑇 +

(𝑢𝑘+1)
2𝑣𝐻𝑘+1𝑣

𝑇  But the middle terms cancel since the two expressions coincide with a sign 
difference as the matrix vector parts are scalar and transposes of eachother. So, 

𝑤𝐻𝑘+1𝑤
𝑇 = (𝑣𝑘+1)

2𝑢𝐻𝑘+1𝑢
𝑇 + (𝑢𝑘+1)

2𝑣𝐻𝑘+1𝑣
𝑇  

This is less than 0 since u and v are eigenvectors of 𝐻𝑘+1 with negative eigenvalues. But 
also, since w has no k+1 component, this is the same as using 𝑤𝑘 having the first k 
components of w and writing 𝑤𝑘𝐻𝑘𝑤𝑘

𝑇, but this is not negative. This contradiction allows us 
to conclude by induction that all principal minors are positive definite if they all have 
positive determinant, and in particular so is the last one. So done. 

ii) This is easy once we have part (i) of the theorem. If we take minus a negative definite matrix 
it becomes positive definite as all the eigenvalues just change sign, and minus a matrix 
turns the determinant of the k’th minor into the determinant of minus the k’th minor, which 



by determinant properties multiplies it by (−1)𝑘, converting a - + - + - + … signature into a + 
+ + + + … signature. So it is essentially just (i) applied to minus the matrix. 

This theorem is very useful as we can now classify stationary points without computing the 
eigenvalues whenever the determinant of the matrix is non-zero (as this is equivalent to none of the 
eigenvalues being 0). 

Now suppose f(x,y) has a stationary point at 𝑥0 = (𝑥0, 𝑦0) and coordinates are alligned with the 
principal axes/eigenvectors of the hessian matrix. Now assume all the eigenvalues are all non-zero. 

Consider 𝑥 = 𝑥0 + (𝑑𝑥, 𝑑𝑦), then 𝑓(𝑥) = 𝑓(𝑥0) +
1

2
𝑑𝑥2𝜆1 +

1

2
𝑑𝑦2𝜆2 + 𝑜(𝑥

2 + 𝑦2). If we assume that 

we have that the higher order terms are 0, then indeed we will have hyperbolic/elliptical contours near 
a stationary point. 

Now we want to say some things about the behavior of contours f(x,y)=c, in particular that they are 
actually continuous near a certain point whenever f has continuous second partial derivatives, and 
that they cross at a saddle point when the eigenvalues are not zero. 

Preliminary definition 1: Uniform convergence -  We know about how pointwise convergence works – 
a sequence of function converges to a function if it converges at every value. We can say “For each 
point, there is an ε>0 such that for all x, our sequence of functions f(x) is eventually, after some n, 
within ε of the limit function”. This is different from uniform convergence in the sense that uniform 
convergence requires n not to depend on x. We need the function to eventually get arbitrarily close at 
all points at once, not just at each point. An example of a sequence of functions that converges 
pointwise but fails this is the following: 

𝑓𝑛(𝑥) = {
0 < 𝑥 <

1

𝑛
: 1 − 𝑛𝑥

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒: 0

 

This looks like the functions in these images: 

Images: Shows 
examples of this for n=1, 2, 10. 

The point is: For any point you choose, say k, after > 1

𝑘
 steps, we will get to 0. So we converge 

pointwise to 0. It seems like we can pick x=0 and it will converge to 1 but we defined f(0) to be 0. We do 
not converge uniformly to 0 as we never satisfy that all points get arbitrarily close to 0. 

Preliminary definition 2: Lipschitz continuous – A function is lipschitz continuous if we always satisfy 
that |𝑓(𝑥) < 𝑓(𝑦)| < 𝑘|𝑥 − 𝑦| for some k. This intuitively means its slope is never greater than k, 
however it need not be differentiable, it just can’t ever be “vertical” or approach being vertical. 



Preliminary definition 3: A family of functions F is Equicontinuous at a point 𝑥0 if for every 𝜀 > 0 there 
exists a 𝛿 > 0 such that for all functions f in F,  

|𝑥0 − 𝑥| < 𝛿 ⇒ |𝑓(𝑥0) − 𝑓(𝑥)| < 𝜀 

Lemma 1 (Stone weierstrass theorem for real functions on 2D rectangles): For any continuous real 
function defined on a closed rectangle [a,b]⨯[c,d] we can define a sequence of Lipschitz continuous 
functions that converges uniformly to our function. 

Proof: Fix ε>0. We will use the known fact (Level 6 technical results) that our function is uniformly 
continous since it is continuous on a closed interval. So let 𝛿 be such that |𝑥 − 𝑦| < 𝛿 ⇒
|𝑓(𝑥) − 𝑓(𝑦)| <

𝜀

2
 (we know this 𝛿 exists exactly by this level 6 result). Now what we will do is split our 

rectangle into rectangles with long side shorter than 𝛿
√2

 (actually we just need that the longest 

diagonal is shorter than 𝛿). Now in this rectangle we will define our function g to coincide with f at the 
corners and then change linearly between the corners. Now for any 𝑡 in this rectangle with 𝑥0 one of 
the rectangle’s corners and 𝑦0 its opposite corner, |𝑥0 − 𝑡| < 𝛿 ⇒ |𝑓(𝑥0) − 𝑓(𝑡)| < 𝜀, and also 
|𝑦0 − 𝑡| < 𝛿 ⇒ |𝑓(𝑦0) − 𝑓(𝑡)| < 𝜀. Therefore what we have is that 𝑓(𝑥0) and 𝑓(𝑦0) are within a band of 
width 2𝜀 around 𝑓(𝑡), so thus 𝑔(𝑡) which is between 𝑔(𝑥0) and 𝑔(𝑦0) is in that band, so we must have 
|𝑔(𝑡) − 𝑓(𝑡)| < 𝜀. Therefore if we let 𝜀𝑛 → 0, we will get uniform convergence, and all of these 
individual functions are lipschitz continuous because of how we defined them: There slope is 

bounded by √𝑔𝑥2 + 𝑔𝑦2 , where these slopes are finite because they are the finite change in the 
function across the rectangle divided by the non-zero width of the rectangle. So done. 

Lemma 2 (Arzela-Ascoli theorem specialized to real functions on 2D closed intervals): Let a sequence 
of functions 𝑓𝑛 be uniformly bounded on a closed bounded interval (For our purposes, we will prove 
this for 1D or 2D intervals) and equicontinuous, then there exists a subsequence 𝑓𝑛𝑘  that converges 
uniformly to a continuous function f. 

Proof: Enumerate the rational points in ℝ2. To do this, first enumerate the rationals, ie write them out 
in a list so that we have a bijection between the positive integers and the rational numbers. There are 
many ways to do this, but one way is to go around like this image below where the x is the numerator 
and the y is the denominator, but exclude duplicates or 0 denominators. 

Image: Visual idea of the bijection 

Then we know from level 6 that the cartesian product of two listable sets is listable, in fact by a similar 
diagram to the image above. 



Now we filter this enumeration so we only have the rational numbers in our interval. So we have a list 
of all the rational points in our interval. Call this enumeration 𝑥1, 𝑥2, … 

Since 𝑓𝑛 has a uniform bound M, there is a sequence 𝑓𝑛1,𝑘  such that 𝑓𝑛1,𝑘(𝑥1) converges pointwise by 

Bolanzo-Weierstrass (Level 6 technical results). We can find a further subsequence 𝑓𝑛2,𝑘  of this such 

that 𝑓𝑛2,𝑘(𝑥2) also converges. We can get an infinite chain of subsequences this way. Now we want to 

form a sequence of functions 𝑓𝑘 defined by 𝑓𝑘 = 𝑓𝑛𝑘,𝑘. By construction, this converges at every rational 

point. Therefore, given any ε and any rational point 𝑥𝑘, we can find an integer N such that for all n, 

m>N, we have that |𝑓𝑛(𝑥𝑘) − 𝑓𝑚(𝑥𝑘)| <
𝜀

3
. We’re making progress. 

Since the family F is equicontinuous, there must be an open interval around 𝑥𝑘  such that for any s and 

t in that open interval, |𝑓(𝑠) − 𝑓(𝑡)| < 𝜀

3
 for all f in our family of functions. Doing this for all 𝑥𝑘 gives a 

covering of our interval using open sets. We will prove shortly the fundamental result that this must 
admit a finite subcover since the interval is closed, but first I will remark that you can see that if this is 
true then the theorem about uniform continuity will follow since we can pick delta to be less than the 
smallest thing in this subcover. 

Note that Bolzano-Weierstrass applies on this interval since it is closed: Find a subsequence that 
converges in the x direction by the 1D version then find a subsequence of that that converges also in 
the y direction. Assume for a contradiction that we have a countably infinite covering of this interval in 
open sets 𝑈1, 𝑈2, 𝑈3, 𝑈4, … with no finite sub-cover. Now ennumerate the infinite covering and 
construct a sequence of points 𝑎𝑛 such that 𝑎𝑛 is not in the first n-1 open things – possible as those do 
not cover the entire interval. This has a convergent sub-sequence by bolzano-weierstrass 𝑎𝑛𝑘 → 𝑥. 
There is some 𝑈𝑗  with x in 𝑈𝑗. But then for all sufficiently large k, 𝑎𝑛𝑘  is in 𝑈𝑗  since it gets arbitrarily 
close to x which is in 𝑈𝑗  and not on the boundary. But then if 𝑛𝑘 > 𝑗, this contradicts our construction. 
So we have a finite subcover 𝑈1, 𝑈2, … , 𝑈𝑗. There also exists an integer K such that each of these open 
sets in our subcover contains one of the first K rationals in our list, otherwise our list would be missing 
every rational in that interval. Finally, for any t in our interval, there are j and k<K such that t and 𝑥𝑘 
belong to the same interval 𝑈𝑗. For this choice of k, we have, by the triangle ineuqality: 

|𝑓𝑛(𝑡) − 𝑓𝑚(𝑡)| ≤ |𝑓𝑛(𝑡) − 𝑓𝑛(𝑥𝑘)| + |𝑓𝑚(𝑥𝑘) − 𝑓𝑛(𝑥𝑘)| + |𝑓𝑚(𝑡) − 𝑓𝑚(𝑥𝑘)| 

Where we pick n and m to be at least as large as N which is at least large enough such that for all k 

from 1 to K we have the above inequality |𝑓𝑛(𝑥𝑘) − 𝑓𝑚(𝑥𝑘)| <
𝜀

3
, and also from how we defined the U’s, 

|𝑓𝑛(𝑡) − 𝑓𝑛(𝑥𝑘)|, |𝑓𝑚(𝑡) − 𝑓𝑚(𝑥𝑘)| <
𝜀

3
 always. Therefore what we have is that for any t and fixed 𝜀, 

|𝑓𝑛(𝑡) − 𝑓𝑚(𝑡)| ≤ 𝜀 for m and n large enough. Therefore at each t, we see that the functions value is 
forced into an arbitrarily small band and thus we have pointwise convergence. We define f to be this 
pointwise limit, and then |𝑓𝑛(𝑡) − 𝑓𝑚(𝑡)| ≤ 𝜀. Now letting m go to infinity and taking a pointwise limit, 
|𝑓𝑛(𝑡) − 𝑓(𝑡)| ≤ 𝜀, so our sequence of functions converges uniformly. Since 𝜀 was arbitrary, we can 

say that, for example, |𝑓𝑛(𝑡) − 𝑓(𝑡)| ≤
𝜀

2
< 𝜀 so the inequality is strict. However, I need to show that a 

uniform limit of continuous functions is continuous. 

Fix 𝜀 > 0.  Pick N such that for all n>N, and all t |𝑓𝑛(𝑡) − 𝑓(𝑡)| <
𝜀

3
. By continuity, for each x we have 

that  |𝑥 − 𝑦| < 𝛿 ⇒ |𝑓𝑁(𝑥) − 𝑓𝑁(𝑦)| <
𝜀

3
 for some 𝛿. Then, by the triangle inequality, 

 |𝑥 − 𝑦| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑦)| ≤ |𝑓(𝑥) − 𝑓𝑁(𝑥)| + |𝑓𝑁(𝑥) − 𝑓𝑁(𝑦)| + |𝑓(𝑦) − 𝑓𝑁(𝑦)| < 𝜀. 



So done. 

Lemma 3 (Peano existence theorem): Let 𝑓(𝑥, 𝑦) be continuous on an open interval D around (𝑥0, 𝑦0), 
then the differential equation 𝑦′(𝑥) = 𝑓(𝑥, 𝑦) with initial condition (𝑥0, 𝑦0) has a solution in a 
neighbourhood about that point that is not necessarily unique. (It is unique under another mild 
condition, in fact this is when f is lipschitz continuous, but we do not need that so we will just do the 
existence theorem for now). 

Proof: By replacing 𝑦 with 𝑦 − 𝑦0 and similarly for x, we can assume that the initial condition is that we 
must pass through the origin. Since D is open, define a closed rectangle 𝑅 ≔ [−𝑥1, 𝑥1] ⨯ [−𝑦1, 𝑦1] 
contained in D. On R, the extreme value theorem implies that sup

𝑅
|𝑓| ≤ 𝐶 < ∞. Now by Lemma 1, pick 

a sequence of lipschitz continuous functions 𝑓𝑛 converging uniformly to f with sup
𝑅
|𝑓𝑘| ≤ 2𝐶 < ∞. We 

define the picard itrations 𝑦𝑘,𝑛: 𝐼 = [−𝑡2, 𝑡2] → ℝ where we set that 𝑡2 = min (𝑡1,
𝑦1

2𝐶
), as follows: 

𝑦𝑘,0(𝑡) = 0 and 𝑦𝑘,𝑛+1(𝑥) = ∫ 𝑓𝑘 (𝑡, 𝑦𝑘,𝑛(𝑡)) 𝑑𝑡
𝑥

0
. They are well defined by induction as we have that 

|𝑦𝑘,𝑛+1(𝑥)| ≤ ∫ |𝑓𝑘 (𝑡, 𝑦𝑘,𝑛(𝑡))| 𝑑𝑡
𝑥

0
≤ |𝑥| sup

𝑅
|𝑓𝑘| ≤ 𝑡22𝐶 ≤ 𝑦1, and thus (𝑡, 𝑦𝑘,𝑛(𝑡)) is within the 

domain of 𝑓𝑘. Also, by the triangle inequality for integrals, 

|𝑦𝑘,𝑛+1(𝑥) − 𝑦𝑘,𝑛(𝑥)| = ∫ |𝑓𝑘 (𝑡, 𝑦𝑘,𝑛(𝑡)) − 𝑓𝑘 (𝑡, 𝑦𝑘,𝑛−1(𝑡))| 𝑑𝑡

𝑥

0

≤ 𝐿𝑘∫|(𝑡, 𝑦𝑘,𝑛(𝑡)) − (𝑡, 𝑦𝑘,𝑛−1(𝑡))| 𝑑𝑡

𝑥

0

 

Where for each k, an 𝐿𝑘 exists by the Lipschitz condition. 

Now define 𝑀𝑘,𝑛(𝑥) = sup
𝑡∈[0,𝑥]

|𝑦𝑘,𝑛+1(𝑡) − 𝑦𝑘,𝑛(𝑡)| ≤ 𝐿𝑘 ∫ 𝑀𝑘,𝑛−1(𝑡)𝑑𝑡
𝑥

0
. We also have that 𝑀𝑘,0(𝑥) =

sup
𝑡∈[0,𝑥]

|𝑦𝑘,1(𝑡) − 𝑦𝑘,0(𝑡)| = sup
𝑡∈[0,𝑥]

|𝑦𝑘,1(𝑡)| ≤ ∫ |𝑓𝑘(𝑡, 0)|𝑑𝑡
𝑥

0
≤ 2𝐶|𝑥| 

Now we will prove by induction what we have the following bound for x in I for which we just proved the 
base case: 

𝑀𝑘,𝑛(𝑥) ≤
(2𝐶𝐿𝑘

𝑛|𝑥|𝑛+1)

(𝑛 + 1)!
 

Lets do the induction step. Suppose this is true, then  

𝑀𝑘,𝑛+1(𝑡) ≤ 𝐿𝑘∫𝑀𝑘,𝑛(𝑡)𝑑𝑡

𝑥

0

≤ 𝐿𝑘∫
(2𝐶𝐿𝑘

𝑛|𝑥|𝑛+1)

(𝑛 + 1)!
𝑑𝑡

𝑥

0

≤ 2𝐶𝐿𝑘
𝑛+1∫

(|𝑥|𝑛+1)

(𝑛 + 1)!
𝑑𝑡

𝑥

0

=
(2𝐶𝐿𝑘

𝑛+1|𝑥|𝑛+2)

(𝑛 + 2)!
 

As required. Crucially, this tends to 0 as n goes to infinity for all fixed x. 

Now for x and x’ in I, |𝑦𝑘,𝑛+1(𝑥′) − 𝑦𝑘,𝑛+1(𝑥)| ≤ ∫ |𝑓𝑘 (𝑡, 𝑦𝑘,𝑛(𝑡))| 𝑑𝑡
𝑥′

𝑥
≤ 2𝐶|𝑡′ − 𝑡|, and thus since this 

always holds, the family of functions 𝑦𝑘,𝑛 is equicontinuous: For 𝜀 given pick 𝛿 = 𝜀

2𝐶
. Therefore by 

lemma 2, for each k, there is a subsequence 𝑦𝑘,𝑎𝑛  converging uniformly to a continuous function 𝑦𝑘. 

|𝑦𝑘,𝑎𝑛(𝑥) − ∫ 𝑓𝑘 (𝑡, 𝑦𝑘,𝑎𝑛(𝑡)) 𝑑𝑡
𝑥

0

| = |𝑦𝑘,𝑎𝑛(𝑥) − 𝑦𝑘,𝑎𝑛+1(𝑥)| ≤ 𝑀𝑘,𝑎𝑛(𝑥) → 0 



Thus, for each fixed x, we conclude 𝑦𝑘(𝑥) = ∫ 𝑓𝑘(𝑡, 𝑦𝑘(𝑡))𝑑𝑡
𝑥

0
 since the limit of 𝑦𝑘,𝑎𝑛(𝑥) must coincide 

according to the inequality above, and the integral approaches ∫ 𝑓𝑘(𝑡, 𝑦𝑘(𝑡))𝑑𝑡
𝑥

0
 since f is continuous 

so we can pass the y limit through it and then we are bounded by 2C so we can use dominated 
convergence (level 6 technical results) to pass the limit through the integral. Since each 𝑦𝑘,𝑛 has a 
uniform bound 𝑦1, so does 𝑦𝑘  (the limit of those. Now, by the triangle inequality for integrals, 

 |𝑦𝑘(𝑥) − 𝑦𝑘(𝑥′)| ≤ ∫ |𝑓𝑘(𝑡, 𝑦𝑘(𝑡))|𝑑𝑡
𝑥

𝑥′
≤ 2𝐶|𝑥 − 𝑥′| 

So 𝑦𝑘  is equicontinuous so it has a subsequence 𝑘𝑛 that converges uniformly to a continuous function 

y. 𝑦𝑘𝑛(𝑥) = ∫ 𝑓𝑘𝑛 (𝑡, 𝑦𝑘𝑛(𝑡)) 𝑑𝑡
𝑥

0
, therefore (supposing x is positive since the other way around is the 

same just with a sign flipped), ∫ 𝑓𝑘𝑛 (𝑡, 𝑦𝑘𝑛(𝑡)) 𝑑𝑡
𝑥

0
→ ∫ 𝑓(𝑡, 𝑦(𝑡))𝑑𝑡

𝑥

0
 by the dominated convergence 

theorem and continuity of f. The limits on each side must coincide, so 𝑦(𝑥) = ∫ 𝑓(𝑡, 𝑦)𝑑𝑡
𝑥

0
. By the 

fundamental theorem of calculus, y is our solution to the differential equation so we are done at last. 

Lemma 4 (Implicit function theorem in 2 dimensions): If 𝑓 is continuously differentiable in a 
neighbourhood of a point (𝑥0, 𝑦0) and 𝑓𝑦(𝑥, 𝑦) ≠ 0 in that neighbourhood, then there exists a unique 

differentiable function 𝑔 such that 𝑦0 = 𝑔(𝑥0), 𝑓(𝑥, 𝑔(𝑥)) = 0 in a neighbourhood of 𝑥0. 

Proof: Lets try to find a g that works. By differentiating the equation 𝑓(𝑥, 𝑔(𝑥)) = 0 we get 

𝑓𝑥 + 𝑔
′(𝑥)𝑓𝑦 = 0 so 𝑔′(𝑥) = − 𝑓𝑥

𝑓𝑦
. Since f is continuously differentiable, 𝑓𝑥 and 𝑓𝑦 are continuous, and 

since 𝑓𝑦 ≠ 0, 𝑓𝑥
𝑓𝑦

 is continuous, so by Lemma 3 such a function g exists and it is continuous and 

differentiable. 

Also, g(x) actually satisfies this equation: 

(Image: Screenshot of a 
proof of the claim above) 

Note that for some fixed x, 𝑓(𝑥, 𝑦) as a function of y is increasing or decreasing (and thus injective) in a 
neighbourhood since f is continuously differentiable and 𝑓(𝑥0, 𝑦) is not flat in y at our point. Therefore 
we have that if two solutions are the different, 𝑓(𝑥0, 𝑔1(𝑥)) = 𝑓(𝑥0, 𝑔2(𝑥)) so by injectivity the two 
solutions are the same, thus we have uniqueness. 

Corollary: Contours around a non-stationary point are continuous. At this point, at least one of the 
partial derivatives is non-zero, so we can use that one to construct a differentiable local contour as in 
the theorem above. 

Corollary: Contours cross near saddle points where no eigenvalues of the hessian matrix are 0, if the 
second partials are all continuous. 

Proof: Shift everything so the saddle point is at (0, 0, 0) to simplify calculations. 



 𝑓(𝑥, 𝑦) = 𝜆1𝑥2 + 𝜆2𝑦2 + 𝑜(𝑥2, 𝑦2) where I dropped unnecessary factors of a half, 𝜆1 > 0, 𝜆2 < 0. Now 
scale axes so that 𝑓(𝑥, 𝑦) = 𝑥2 − 𝑦2 + 𝑜(𝑥2, 𝑦2) 

Remark: If contours cross then we are at a stationary point since grad is 0 with respect to both of the 
principal axes at that point. The intersection between 𝑓𝑥 = 0, 𝑓𝑦 = 0 is only the origin in the 
neighbourhood since those curves have continuous contours near the origin by the implicit function 
theorem (𝑓𝑥 = 0 is a differentiable function x(y) near 0 since 𝑓𝑥𝑥 ≠ 0 near 0 by continuity, for example) 
and their tangent directions are perpendicular so there are no stationary points nearby. Note that we 

can pick a 𝛿 small enough that  |𝑓(𝑥, 𝑦) − 1

2
(𝑥2 − 𝑦2)| <

1

4
(𝑥2 + 𝑦2) whenever we are at a distance 

less than 𝛿. 

Region A: |𝑥| ≥ 2|𝑦|, then 𝑥2 ≥ 4𝑦2, so 𝑥2 − 𝑦2 ≥ 3𝑦2, so 1
2
𝑥2 −

1

2
𝑦2 ≥

1

2
𝑥2 −

1

8
𝑥2 =

3

8
𝑥2, and 

|𝑓(𝑥, 𝑦) − 𝑥2 + 𝑦2| <
1

4
(𝑥2 + 𝑦2) ≤

1

4
(𝑥2 +

1

4
𝑥2) =

5

16
𝑥2 

Therefore 𝑓(𝑥, 𝑦) ≥ 1

2
(𝑥2 − 𝑦2) − |𝑓(𝑥, 𝑦) −

1

2
(𝑥2 − 𝑦2)| =

1

16
𝑥2 > 0. 

Region B: |𝑦| ≥ 2|𝑥|, symmetric argument gives 𝑓(𝑥, 𝑦) ≤ 1

16
𝑦2 < 0 

Therefore the contours cannot ever lie in these slices, but rather in the two middle wedges. Signs 
alternate as we move around the circle so they must cross 0 at four points. At any of these points, the 
grad is non-zero. By the implicit function theorem, if our neighbourhood is small enough that the 
above contours 𝑓𝑥 = 0, 𝑓𝑦 = 0 lie in those cones, we can find continuously differentiable contours 
corresponding to 𝑓 = 0 since the derivative that can’t be 0 is never 0. So done. 

 

Example: Lets find and classify the stationary points of 𝑓(𝑥, 𝑦) = 4𝑥3 − 12𝑥𝑦 + 𝑦2 + 10𝑦 + 6. 

𝛻𝑓 = (12𝑥2 − 12𝑦,−12𝑥 + 2𝑦 + 10) 

Stationary points: 𝑦 = 𝑥2 therefore −12𝑥 + 2𝑥2 + 10 = 0 so 𝑥, 𝑦 = (1,1), (5,25). 

𝑓𝑥𝑥 = 24𝑥, 𝑓𝑥𝑦 = 𝑓𝑦𝑥 = −12, 𝑓𝑦𝑦 = 2 

Therefore the hessian matrix is 

(
24𝑥 −12
−12 2

) 

When x=1, the signature is +-, when x=5 the signature is ++. Therefore x=1 is a saddle point and x=5 is 
a local minimum. And we will have closed loops as contours near the local minimum and hyperbolic-
llike contours near the local maximum: We could find the eigenvectors and stuff in order to sketch 
these. 

Here is an image of the above function as well as a contour plot, which illustrates previous ideas. 



Image: The function and its contour plot with 
stationary points marked, illustrating above ideas about behavior. 

Lecture 22: 

Example: Consider 2 dependent variables 𝑦1(𝑥), 𝑦2(𝑥) subject to 𝑦1′ = 𝑎𝑦1 + 𝑏𝑦2 + 𝑓1(𝑥) and also 

𝑦2
′ = 𝑐𝑦1 + 𝑑𝑦2 + 𝑓2(𝑥). We can write this in matrix form as (

𝑦1
′

𝑦2
′) = (

𝑎 𝑏
𝑐 𝑑

) (
𝑦1
𝑦2
) + (

𝑓1
𝑓2
). We can also 

solve this using A level techniques by eliminating a dependent variable and converting it into a second 
order equation. We will discuss how we can solve it using matrix methods since that scales up easier 
to higher order cases. We can also start with a second order ODE 𝑦′′ + 𝑎𝑦′ + 𝑏𝑦 = 𝑓 and define     

𝑦1 = 𝑦, 𝑦2 = 𝑦′, then we could write this in matrix form as (
𝑦1
′

𝑦2
′) = (

0 1
−𝑏 −𝑎

) (
𝑦1
𝑦2
) + (

0
𝑓
) to convert it 

into coupled first order ODEs. 

Now we want to be able to solve a matrix equation such as 𝑌′ = 𝑀𝑌 + 𝐹(𝑥). We will write the solution 
to this as 𝑌𝑐 + 𝑌𝑝 (ie, complementary function particular solution form). We will do the boring case 
where the matrix has constant coefficients. 

Lets look for solutions of the form 𝑌𝑐 = 𝑣𝑒𝜆𝑥 with v a constant vector. Then we want 𝑀𝑣 = 𝑌𝑐′ = 𝜆𝑣, so 
this happens exactly when 𝜆 is an eigenvalue of M. Therefore if the eigenvalues are distinct we are 
guranteed to have n solutions of this form. However, we don’t know the general solution using this 



method. For this course, we just have to be able to find some solutions, and not fully solve for the 
general solution. 

We also will need to find a particular solution by guessing. 

As an example, lets find some solutions to the matrix equation 𝑌′ = (−4 24
1 −2

)𝑌 + (
4
1
) 𝑒𝑥. The 

eigenvalues of this matrix are 2 and -8. Therefore there are two complementary functions which are 

𝐶1 (
4
1
) 𝑒2𝑥 and 𝐶2 (

−6
1
) 𝑒−8𝑥 (as those are the corresponding eigenvectors). Given the form of the 

forcing term, we will try a particular solution of the form 𝑢𝑒𝑥. We will get an equation of the form 

 𝑢 = 𝑀𝑢 + (4
1
) (cancelling factors of 𝑒𝑥). We can write this as (𝐼 − 𝑀)𝑢 = (4

1
) where we can find u as 

the matrix is invertible or else 1 would be an eigenvalue. We find that 𝑢 = (−4
−1
). Therefore we can 

write that a (not necessarily general, although we can prove it is in fact general if we do this with the 

other method) family of solutions is (
𝑦1
𝑦2
) = 𝐶1 (

4
1
) 𝑒2𝑥 + 𝐶2 (

−6
1
) 𝑒−8𝑥 + (

−4
−1
) 𝑒𝑥. If the matrix is not 

an eigenvalue further guesses would be needed – we could try multiplying by x, for example, as that 
often works in situations like this, but I don’t know for sure. We would of course get the same answer if 
we do the thing where we convert it into a second order ODE and solve that. 

We can consider phase portraits, similar to what we did in one dimensions earlier on. For 
autonomous systems of ODEs, we can sketch trajectory in phase space, like a vector field. At non-
fixed points there will be one trajectory for each point. 

Example: For 𝑌’ = 𝑀𝑌 there is a fixed point when 𝑌 = 0, or in more generality when 𝑌 ∈ 𝐾𝑒𝑟(𝑀). If M 
has non-repeated eigenvalues and is invertible, we have (general: we can show this using the other 
method) solution 𝑦 = 𝐴𝑣1𝑒𝜆1𝑥 + 𝐵𝑣2𝑒𝜆2𝑥. We have a few cases: 

Case 1: The eigenvalues are real and have opposite signs. Lets say, for example, that 𝜆1 > 0 > 𝜆2. In 
this case, we can find real eigenvectors (see vectors and matrices lecture 19). Since the trajectory 
along one eigenvector will go away from the origin and the other one will go towards the origin, here is 
a sketch of what the phase portrait will look like. 

Image: Sketch of the phase portrait. 

We call the intersection point a saddle point due to its similarity to actual saddle points. 

Case 2: Eigenvalues have same sign and are real and eigenvectors are chosen to be real. 



If they are both positive, everything is going away from the origin, like this sketch below. If they are 
both negative it will look like the sketch but everything will go towards the origin. Therefore each of this 
cases corresponds to whether the origin is stable or unstable. Note that the larger eigenvalue term will 
dmoinate at long distances so we will go closer to that one, which we see in the diagram below is 𝑣2. 
At short distances the opposite happens and the smaller eigenvalue dominates, which is 𝑣1. This 
explains the behavior that we observe. 

Image: Sketch of the phase portrait 

Note that these lines are continuous in all these cases because they are a trajectory of a finite thing 
and are thus differentiable. 

If the eigenvalues are repeated but not 0 all of 2D space will want to go proportional to where it is so 
we will just have lines going through the origin. 

If the roots are not real, then we have sin and cos stuff, which means that we will go in circles, either 
towards or away from the origin depending on whether the real part is positive or negative, as in the 
sketch below. 

If the eigenvalues are pure imaginary, we will have elliptical paths. 

 Image: Sketch of the phase portrait (spiral) 

Lecture 23: 

In the case where our phase portrait traces out an ellipse, the way to determine the trajectory is to find 
the vector 𝑌′ at any point 𝑌 in phase space. 

We will now do this stuff for autonomous systems of 2 non-linear first order ODE’s. A fixed point is a 
point where 𝑦1′ = 𝑦2′ = 0. If our equation is 𝑦1′ = 𝑓(𝑦1, 𝑦2), 𝑦2′ = 𝑔(𝑦1, 𝑦2) then we need to solve 
simaltaneously 𝑓(𝑦1, 𝑦2) = 0, 𝑔(𝑦1, 𝑦2) = 0 to find the fixed points. We can investigate the stability of 
these fixed points and the behavoior around them. We will write 

 (𝑦1(𝑥), 𝑦2(𝑥)) = (𝑥0 + 𝜉(𝑥), 𝑦0 + 𝜂(𝑥)) where (𝑥0, 𝑦0) is a fixed point. If 𝑓 has a taylor series locally 
along each direction, we can write that 

 𝜉′(𝑥) = 𝑦1′ = 𝑓(𝑥0 + 𝜉(𝑥), 𝑦0 + 𝜂(𝑥)) = 𝑓(𝑥0, 𝑦0) + 𝜉(𝑥)𝑓𝑦1(𝑥0, 𝑦0) + 𝜂(𝑥)𝑓𝑦2(𝑥0, 𝑦0). We can write 
this in matrix form (using 𝑓(𝑥0, 𝑦0) = 0 = 𝑔(𝑥0, 𝑦0)) in matrix form as 



(
𝜉′

𝜂′
) = (

𝑓𝑦1 𝑓𝑦2
𝑔𝑦1 𝑔𝑦2

) (
𝜉
𝜂
) 

We can then use the eigenvalues to determine the behavior around the fixed point. We will go through 
an example. Consider the following system of equations which has relevance to the real world: 

𝑦1
′ = 8𝑦1 − 2𝑦1

2 − 2𝑦1𝑦2 

𝑦2
′ = 𝑦1𝑦2 − 𝑦2 

The fixxed points are when 8𝑦1 − 2𝑦12 − 2𝑦1𝑦2 = 0, 𝑦1𝑦2 − 𝑦2 = 0 

2𝑦1(4 − 𝑦1 − 𝑦2) = 0, 𝑦2(𝑦1 − 1) = 0 

So 𝑦1 = 0 or 𝑦1 = 4 − 𝑦2 and 𝑦2 = 0 or 𝑦1 = 1. By considering the four combinations of possibilites, 
we get that (0,0), (1,3) and (4,0) are the fixed points. 

So our matrix (
𝑓𝑦1 𝑓𝑦2
𝑔𝑦1 𝑔𝑦2

) = (
8 − 4𝑦1 − 2𝑦2 −2𝑦1

𝑦2 𝑦1 − 1
). 

At (0,0), 𝑀 = (
8 0
0 −1

) so the eigenvalues are 8 and -1 with the axes as eigenvectors. What will happen 

is we will go towards the fixed point in the y direction and away from it in the x direction. 

At (4,0), 𝑀 = (
−8 −8
0 3

) which has eigenvalues -8 and 3. The corresponding eigenvectors are 

(
1
0
) , (

8
−11

). The eigenvalues have different signs so we have another saddle point. 

At (1,3), 𝑀 = (
−2 −2
3 0

). The eigenvalues are −1 ± 𝑖√5. This tells us that close enough to the point, 

the real part of the eigenvalues will be negative (since we are assuming that the derivatives of f and g 
are continuous) so the trajectory of the curve will have to be inwards, as that would be the trajectory in 
the case we force M constant. 

At (𝜉, 𝜂) = (1,0) the derivative is (−2,3) so this suggests we spiral anticlockwise inwards. 

We can try to put our sketches together we get this: 

 

Which confirms that (1, 3) is the only stable fixed point. 

We can study partial (not ordinary) differential equations. These are equations that involve partial 
derivatives and/or involve multiple variables. This is a massive area of mathematics but we only have 
time to do a few simple examples. 



Consider 𝑓(𝑦, 𝑥) subject to the equation 𝜕𝑓
𝜕𝑥
− 𝑐

𝜕𝑓

𝜕𝑦
= 0. We will do this by asking how f varies along a 

path 𝑦 = 𝐴 − 𝑐𝑥. Then we have 𝑓(𝐴 − 𝑐𝑥, 𝑥), and we can write 𝑑𝑓
𝑑𝑥
=
𝜕𝑓

𝜕𝑥
+
𝜕𝑓

𝜕𝑦

𝑑𝑦

𝑑𝑥
 by the chain rule. Buut 

then by the PDE, 𝑑𝑓
𝑑𝑥
= 0 when 𝑑𝑦

𝑑𝑥
= −𝑐. Therefore f is constant along paths of the form 𝑦 = 𝐴 − 𝑐𝑥. We 

get that 𝑓(𝐴 − 𝑐𝑥, 𝑥) = 𝑔(𝑥0) where g is any differentiable function and 𝑔(𝑥0) = 𝑓(𝐴 − 𝑐𝑥0, 𝑥0) 
Rearranging, we get that 𝑓(𝑦, 𝑥) = 𝑔(𝑦 + 𝑐𝑥) for all a and some differentiable function g. The reason g 
can be any differentiable function is because we check that 𝑓𝑥(𝐴) = 𝑔𝑥(𝑦 + 𝑐𝑥) = 𝑐𝑔′(𝑦 + 𝑐𝑥) and 
that 𝑓𝑦(𝐴) = 𝑔𝑦(𝑦 + 𝑐𝑥) = 𝑔′(𝑦 + 𝑐𝑥) so the PDE is satisfied. And note that the partial derivatives of f 
are assumed to exist for this PDE, and this happens exactly if g is differentiable. If we fix one variable 
here and vary the other variable over time and look at f as a function of that variable, it will move 
smoothly along the axis at a rate c units per time unit. For this reason, the equation above is often 
called the wave equation. These constant lines are called the characteristics. 

Lecture 24: 

We can take the wave equation and impose an initial condition, such as 𝑓(𝑦, 0) = 𝑦2 − 3. We know 
that the general solution is 𝑦2 − 3 = 𝑓(𝑦, 0) = 𝑔(𝑦). Therefore we know g. So we have that the general 
solution is 𝑓(𝑦, 𝑥) = (𝑦 + 𝑐𝑥)2 − 3. 

We can now add a forcing term and get an equation like 

𝜕𝑓

𝜕𝑥
+ 5

𝜕𝑓

𝜕𝑦
= 𝑒−𝑥 with initial condition 𝑓(𝑦, 0) = 𝑒−𝑦

2
 where we need to solve for f. The characteristics 

are of the form 𝑦 = 𝐴 + 5𝑥. We can use the chain rule to get that along these paths, 

 𝜕𝑓
𝜕𝑥
=
𝜕𝑓

𝜕𝑥
+ 5

𝜕𝑓

𝜕𝑦
= 𝑒−𝑥. Therefore along these paths, 𝑓(𝑥0 + 5𝑥, 𝑥) = 𝑔(𝑥0) − 𝑒−𝑥 But then we know 

that 𝑓(𝑦, 0) = 𝑒−𝑦
2
= 𝑔(𝑦) − 1 so 𝑔(𝑦) = 1 + 𝑒−𝑦

2
 so 𝑓(𝑦, 𝑥) = −𝑒−(𝑦−5𝑥)

2
− 𝑒−𝑥 as A must be 

consistent when we set x to 0, and we rearrange to set 𝑥0 + 5𝑥 ≔ 𝑦. 

Now consider the equation 𝜕
2𝑓

𝑑𝑥2
− 𝑐2

𝜕2𝑓

𝑑𝑦2
= 0 (second order wave equation). We can factor this and 

then impose f is twice differentiable in order to let the partial derivatives commute so we can 
commute these factors to then get that: 

(
𝜕

𝜕𝑥
− 𝑐

𝜕

𝜕𝑦
) (
𝜕

𝜕𝑥
+ 𝑐

𝜕

𝜕𝑦
)𝑓 = 0 

Note that both 𝑓(𝑦, 𝑥) = 𝑔(𝑦 + 𝑐𝑥) and 𝑓(𝑦, 𝑥) = ℎ(𝑦 − 𝑐𝑥) with g,h twice continuously differentiable 
are solutions to this equation because each one goes to 0 by one of the differential operators. 

We will now prove that in fact 𝑔(𝑦 + 𝑐𝑥) + ℎ(𝑦 − 𝑐𝑥) is the general solution. Now let 𝜉 ≔ (𝑦 + 𝑐𝑥) and 

𝜂 ≔ (𝑦 − 𝑐𝑥). Now 𝜕
𝜕𝑦
|𝑥 =

𝜕𝜉

𝜕𝑦
|𝑥

𝜕

𝜕𝜉
|𝜂 +

𝜕𝜂

𝜕𝑦
|𝑥

𝜕

𝜕𝜂
|𝜉  by the chain rule. 

Similarly 𝜕
𝜕𝑥
|𝑦 =

𝜕𝜉

𝜕𝑦
|𝑥

𝜕

𝜕𝜉
|𝜂 +

𝜕𝜉

𝜕𝑦
|𝑥

𝜕

𝜕𝜉
|𝜂. Because the terms like 𝜕𝜉

𝜕𝑦
 are just c or -c, we could go through 

the calculations to get 𝜕
𝜕𝑥
− 𝑐

𝜕

𝜕𝑦
= −2𝑐

𝜕

𝜕𝜂
, 𝜕
𝜕𝑥
+ 𝑐

𝜕

𝜕𝑦
= 2𝑐

𝜕

𝜕𝜉
. The wave equation now says that we have 

that −4𝑐2 𝜕2𝑓

𝜕𝜉𝜕𝜂
= 0. We now know that 𝜕

2𝑓

𝜕𝜉𝜕𝜂
= 0, so 𝜕𝑓

𝜕𝜉
= 𝑔̂(𝜉), so 𝑓 = ℎ(𝜂) + 𝑔(𝜉), remembering from 

several lectures ago that by undoing a partial derivative we have to add a function of the other variable 
and not just a constant. 



Now we will impose the initial conditions 𝑓(𝑦, 0) = 1

1+𝑦2
 and 𝑓𝑥(𝑦, 0) = 0 and f is twice continuously 

differentiable. Now we know from what we just did that 𝑓(𝑦, 𝑥) = 𝑔(𝑦 + 𝑐𝑥) + ℎ(𝑦 − 𝑐𝑥) so when 

𝑔(𝑦) + ℎ(𝑦) =
1

1+𝑦2
 by setting y=0. Also, by the single variable chain rule, 𝑓𝑥(𝑦, 0) = 𝑐𝑔′(𝑦) − 𝑐ℎ′(𝑦), 

so if we integrate this wrt y we see that 𝑔(𝑦) − ℎ(𝑦) = 𝐴 is a constant. We can write 𝑔(𝑦) = 𝐴 + ℎ(𝑦) 

so 2𝑔(𝑦) − 𝐴 = 1

1+𝑦2
, so we can rearrange to get that 𝑔(𝑦) = 1

2(1+𝑦2)
+
𝐴

2
 and that ℎ(𝑦) = 1

2(1+𝑦2)
−
𝐴

2
. 

Now we can substitute this back into our general solution to get that 𝑓(𝑦, 𝑥) = 1

2
[

1

1+(𝑦+𝑐𝑥)2
+

1

1+(𝑦−𝑐𝑥)2
] 

since the A’s cancel. 

Now lets sketch what this looks like if we fix x and plot f against y. Then when x=0, we just have the 

simple equation 𝑓(𝑦) = 1

1+𝑦2
 which looks like a sort of bell curve. But then as x changes we will get two 

bell curves that sort of move over time, but they will be half as tall as the original one, but when x is 
near 0 they will add together to give a taller bell curve. I will show images of this. 

   

Image: The graphs of this for varying values of x. We see now why it is the wave equation, and we see 
the waves add together or interfere when x is near 0. We get even more interesting behavior if we had a 
third independent variable, but that is beyond this course. 

In this course we have seen how rich the behavior of these differential equations or systems can be, 
it’s really interesting. 


