Lectures 1-2:

Basically just a review of A level further maths + Level 6 technical results

Lecture 3:

The entire lecture was just a review of stuff we’ve already met at A level, as well as the lecturer doing
an unjustified limit that isn’t allowed (although the thing he “proved” using this unjustified limitis
something we have proved properly in the A level documents). Remember, limits and big O do not

commute, even if the lecturer implied they do.

Lecture 4:

We can have functions of multiple variables, like f: R™ — R". As an example, suppose z = x2 + y3,

then we can sketch this using a contour plot, kind of like elevation maps, where we show lines on the

x,y-plane corresponding to when x? + y3 is constant. Here is that example:
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However, if | imagine this as a 3d graph of a surface with height equal to x2 + y3, then if | pick a point

on this graph and try to find the slope, | have a problem that the slope depends on the direction.

Therefore | write g—zfor the slope as | move in just the x direction and hold y constant. This is called a

partial derivative. In

this example, that is 2x, because we differentiate x? + y2 and the y3 vanishes

since it is a constant. We put a little thingy in the corner like this to show what’s being held constant,

as shown below.
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We do need to be careful about showing what is constant in some cases, as for example iffis a

. 5} 5} .
function of x, y and z, then £| does not always equal £| . Forexample, in the surface
y z

x2+y3+2z* =1, then Z—£ = ;—x(xz +y3 + z%) = 2x + 423 Z—i sincey is constant, however
y

o — 24y

axz—2x+3y o

Formally, for example, if zis a function of x and y, then
0z
oxl,

z(x+hy)—-z(x,y)

Is defined as lim
h—0 h

Example:

flx,y)=x?>+y3+ e*¥*. As a shorthand for the partial derivative with respect to x we often instead
write f,. Since y is treated as constant here, we get that f, = 2x + y2e*”, and fy =3y*+ 2xye*y’,
We can compute second partial derivatvies: fy, = Zye’fy2 + 2xy3exy2,fxx =2+ y4exy2, and also

fyx = 2ye®” + 2xy3e*¥’. Notice that fxy = fyx inthis case. It turns out this is not a coincidence. We
will now prove that this is intuitive, and always true whenever f,, and f,, are continuous, and we will
also prove a version of the chain rule for multivariable functions. First, we will need to interpret partial
derivatvies as entries of a matrix.

Some precise definitions we need:
Let f be a function from R™ to R".

Then the directional derivative of f at a point a is the slope of f as you move along a vector, which, for a

fla+tu)—f(a)
t

vector u, can be written as D, f (a) = ltirrol whenever this limit exists. This is equal to
-

d . . . . . .
Ef(a + tu) when t=0. When u is a basis vector, like the x axis or the y axis, this is when we get a
partial derivative.

We will define the “derivative” of f. Here, h is an m-dimensional vector and f spits out n dimensional
vectors. Like in the real number case, we say f is differentiable if there is some A such that

f(a+h)=f(a)+ Ah + o(h)

This means that Aiis an n*m dimensional matrix as itis a linear map from m dimensions to n
dimensions. Intuitively this means we can find an approximation of f near a that resembles a line or a
plane or whatever whenever f is differentiable.

We now call A Df. From now on you can think of Df(x) as Df times x in the matrix multiplication sense,
since matrix multiplication is really function composition. We have, for a vector u in a fixed direction,

fla+tu)—f(a)—tDf (a)(u)
[t]|u|

i £t —f (@)-Df (@) (tw)
t—0 [tu|
basis vector, this is equivalent to saying that Df (a) (u) is the partial derivative of f with respect to u.

= (. This is equivalent to saying ltirrol = 0, thusifuisa



fla+tu)— f(cz) @M _ 5o Df(a)u =

This is because In this case |u|=1 so we just need ltim

lim fla+tw)—f(a)
t-0 t
we essentially are filtering for a specific column, so the resulting vector, which is the partial

derivatives of the components of the output vector of f, is part of the matrix D. This meansthatDis a

which is clearly the partial derivative. But when we multiply a matrix by a basis vector,

matrix pf partial derivatives, which is really nice.

Theorem 1: If all the partial derivatives of f are continuous in a neighbourhood around a then fis
differentiable at a in the sense above.

Proof of lemma (screenshots from some other cambridge notes): For each n-dimensional vector h we
have the following:

fla+h)— f(a)= Ef(a+ hiei +---+hje;)— flat+hier+---+hj_1e;_1)
J=1
And we write:

h) — hiey + -+ hje; = (hy,--+ hj, 0,-++,0)
‘ ‘ where the e’s are basis vectors (like (1,0,0), etc).

Then we can use the method of differences:

fla+h) —f(a) = Z f(a+hD) = f(a+h0D))

= zn: (f(a+nrU=D + hye)) - fa+hUD))

j=1
But now, the mean value theorem from single-variable valvulus allows us to write

n

fla+h) - fa) =z ( f(a+ hU- 1)+the])>

For some t; between 0 and 1 that depends onj.

n

Fla+h) - f(a)—z ( f(a+hU- 1)+thej)>

- 5 . 5
- Z f(a) + Z hy (5—81,16(@ +hU™D + tjhjej)> - (5—%f(a)>

j=1
But the partial derivatives are continuous at a so the second term is thus o(h) as

(%f(a + hU-D 4 tjhjej)> - (%f(a)) approaches 0 by continuity so when multiplied by h it is o(h).
J J

Thus f;(a + h) — f;(a) , meaning that Df (a) = f (a), essentially the matrix of partial

115

derivatives.

s
Theorem 2: ﬁ Sy—; if both of these partial derivatives are continuous at a.



We will prove this. However, this is somewhat obvious, in the sense that, for example, if | move north a
bit and measure the change in height, then go back to where | started and move east a bit and to that
again, | may measure a slightly different change in height. If | do what | described in the last sentence
but with the words “north” and “east” swapped around, the difference of the height differences will be
the same, it will always equal the sum of two of the diagonal corner heights minus the height of the
other two diagonal corners. Stare at this until it makes sense to you so you have an intuition of what is
really going on.

Proof (screenshots from cambridge notes): Let’s assume fis going to R, since it is only necessary to
show that this is true for each component of any arbitrary f.

Let
gij(t) = f(a+te; +te;) — f(a+te;) — f(a+te;) + f(a).
Then for each fixed ¢, define ¢ : [0,1] — R by
¢(s) = f(a + ste; +te;) — f(a+ ste;).

Then we get
9i5(t) = ¢(1) — ¢(0).

We have g;;(t) = ¢'(s) =t <<%f(a + ste; + tej)> — <%f(a + stei)>>

=t (% (f(a + ste; +tej) — f(a+ stei))> for some s between 0 and 1 because of the single variable
l

mean value theorem. Applying the mean value theorem to f(a + ste; + kte;) means there isak
62
6€j5€i

between 0 and 1 such that g;;(t) = t? f(a + ste; + kte;) and we can do the same for gj;, which

52
Seié‘ej

is in fact equal to g;; by definition, to get that g;; (t) = t2 f(a+ Ste; + Etej), so since they are

62
5€j6€i

" f(a+ ste; + kte;) = ¢2

equal we have t?
a Se;be;

f(a + ste; + kte;) . We are interested in the limit

. - 52 .
of this as t goes to 0, and by continuity, these both converge to 63/_6fx (a), which thus must equal

85%f
5x8y (@).

Theorem 3: This is the multivariate chain rule. Although we will provide a proof, it is far more
important that | am providing an explanation of what the chain rule actually says. We will prove it and
then do examples to show why some of the expressions that use the chain rule are the same as the
chain rule which we will prove here in the matrix sense. The chain rule says

D(g° f)(a) = Dg(f(a))Df(a)

From the definition of the derivatives, we have

fla+h)=f(a)+Df(h)+o(h)

and

9(f(a) +k) = g(f(a)) + Dg(f (k)) + o(k)

Therefore



g(f(a+h)) =g(f(a) + Df(h) + o(h)).Letk = Df (h) + o(h), then we have

g(f(a+h)) =g(f(a)) + Dg(f(Df(h) + o(h))) + o(Df(h) + o(h))
So

9(fla+n) = g(f(@)+Dg (F(Df(h))) + Dg(f(o(h))) + o(DF (h) + o(h))
Since derivatives are additive.

Now we will define the operator norm. For a matrix B, let |B| be the largest possible magnitude of a
vector of magnitude 1 after being multiplied by B. This is clearly finite, then multiplying everything by
the right constants gives that for a vector B, |Bv| < |B||v|. Therefore Dg(f(o(h))) is o(h) since D(gof)
is a matrix. Also, by the triangle inequality, |JAh+o(h)| < |A]|h]+|o(h)| = (JA|+1)|h| since an o(h) thing is
less than 1 times h when h is sufficiently small by definition. Therefore, since Ah+o(h) is bounded by a
constant times h, o(Ah+o(h)) is o(h) as well. The fact that we now have

(fla+m) =g(f(@)+Dg (F(DfF()) + o(h)
Completes the proof of the chain rule.

Side note: Operator norm notation is annoying because we use absolute value signs to denote both it
and the determinant so we have to guess what we want based on context. For both cases, we
sometimes use double bars like ||A|| or single bars like |A|.

EXAMPLE:

Let’s do an example where we apply the chain rule as given above. Let z be a function of x and y which
are both functions of t. Let z = xy where x = e* and y = sin (t) Then we can consider a function

d ®
f(@t) = (x =et,y =sin(t)) and g(x,y) = xy, then % = W. This is a total derivative and equal to

the matrix derivative since z(t) is a function from 1 variable to 1 variable.

Since fis a function from 1 variable to 2 variables, the matrix Df in question will be 2x1. The matrix will
then look as follows:

dx
_[at|_( € )
Df = dy _(cos(t)
dt

Similarly, Dg will be 1x2 because gis a function from 2 variables to 1 variable.

D(gef)=(sin(t) e

D(g e f)Df = (sin(t) e®) (co§ (t))

D(g e f)Df = sin(t) e + cos(t)e’



ince %2 — _ (2 o\ @) g 4 bzax  szay
And, therefore, since pri D(go f)Df = (Sx ay) dy ;80— =——+ 5y dt . This is why that comes
dt
from the chain rule.
. dz 6z dx .. .. . . .
Notice, however, that the statement o axdr + —_— |s intuitively obvious: Since dtis not 0 and only

approaching 0, we can write dz = g—idx + 5dy, which basically says that z changes by the amount z

changes as x changes times the amount that x changes plus the amount that z changes as y changes

times the amount that y changes. Stare at this until you see why it makes the above formula intuitively

dz 8z dx oz d 62 6z d
obvious. If zis a function of y which is a function of x, then — = —— + — 2 - =22
dx Sxdx  bydx 6x Sy dx

Notice that the columns correspond to the variable we are differentiating with respect to, and the
rows correspond to the variable we are differentiating. Note that the matrices are always compatible
because if fis a function from a variables to b variables and g is from c variables to d variables, then
fogis only valid if b=c, which exactly corresponds with the condition for matrix multiplication to be
compatible. So done.

We can also take the chain rule for a function f(x,y) and integrate both sides as follows.

(x2,¥2) (x2,¥2) ) (x2,¥2) b)
f df = O g + f —fdy
(

X1,Y1) (x1,y1) 6x

We are taking the path where we move in the x direction until x, and then move in the y direction until

(x2,¥2) 6f (x2,y2) 5f _ [(%20f Y2 0f
Y2 Therefore f(x ) 5 0 f(xly ) 5y = fxl oxlyy, dx+ | 27l yer, dy.

(x2,52)
f(x1'J/1)
these small changes will always be f(x,,y,) — f(x1,¥1), the integral does not depend on the path,
20f Y2 0f

X + — dy because this reduces it to two integrals of single
Xly=y, Y1 0y xX=x;

dfjust means adding up the small changes in f as you move along the path. Since the sum of

and we just wrote it as f

variable functions.
Lecture 5:

Here are some examples of using the chain rule.

Lets say we want to work in polar coordinates and write f(x,y) = f(x(r, 0),y(r, 9)) where
x =rcos(0) and y = rsin(0). Then we can apply the chain rule as follows:

_of af af i .
36 = ox , oyl oyl rcos(0) oxl, rsin(0)
aof) _of af _of af | .
darlg T ox ar dyl, drlg ~ ox y cos(6) + ayl, sin(6)

of
ax

__9fdx , dfdy , of oz

Now let’s consider a surface defined by f(x, y,z) = c. The chain rule gives , " oxox Tayox Tazox
. . . of of , of oy
However, z is constant so the last term vanishes, and dx/dx is 1, so Py it + 9y 9x° However, on
zZ

0 . . d
paths where z and f are constant, we have f, + f, % = 0. Rearranging gives %

 filye

, and
Z fy|x,z



similarly for other partial derivatives. In fact, we can easily show from this that the following product,
called the cyclical rule, holds:

0z
z 0y

ox

ay
x 0z

" =-1.

y

. . dyd C .
In the normal two dimensional case, we had ﬁﬁ = 1. This is still true whenever we are holding all but

two variables constant, however, it is in general wrong to assume that for a function f(x,y,z),

x

9f| ox
y of

ax

= 1, as thisis false in general.
z

Also, here is the function x2 —y2 = 0.

As you can see, when x=y=0, Z—zwill not exist as the slope in question could be -1 or 1. This will be

. 0 .
reflected when we try to compute it: if x2 — y? = f = ¢, then we use 2= Mto get that thisis

ox Z fylx,z
ay| _ 2x

——, which is indeed undefined when y=0.
0xly, -2y

I will also show an example of how to find partial derivatives like % on a surface defined parametrically

with x, y, and z functions of u and v.
Here is the first case:

T= m(u7 ’U)w Y= y(u!v)» z= z(u>7})
dr = z, du + z, dv
dy = Yy du + y, dv

dz = zydu + z, dv
Ty Ty du) [(dz
Yu Yo dv ) \dy
1 Yy = —Ty dz\ (du
Tl — ToYu \“Yu  Tu ) \dy) \dv

[y@dmfmwdy] [Eudy*yudz]
dz = z, Zy
TuYy — ToYu TuYp — ToYu

dz = da [yvzu - zuyn] Ly |:Z@ru - Z,,_D:,,:|

TuYy — Tolu Tuly — Tou
L YR &
p = SLe Cvdu

TuYo — ToYu

Where in the last step | have reverse engineered z, by equating the coefficients in the chain rule, valid
since the step above must be true even when | fixy.

Ifitis parametric in terms of just t, then we usually cannot do something similar: A curve’s trajectory
might leave the plane where y is constant so we cannot just fixy. The above proof assumes that the
surface is actually differentiable at the point in question when we fixy. For example, the point (1, 0, 0)
on the unit sphere is not differentiable with respect to x and with y held constant. This can be seen as
the unit sphere can be parametrized as



x=v1—v?cos(u),y =v1—v?sin(u),z =v.

Then the denominator of z,, by the above formula is

-1 — p2 i —Y - v V1 = 2 — P2 2 — ;
1-v sm(u)msm(u) Wcos(u) 1 — v2 cos(u) = v(sin“(u) + cos*(u)) = v, but since

thisis at(1, 0, 0), v must be 0 since z=v, so the denominator works out to be 0.

Similarly, if we were to define a curve parametrically in terms of a single variable, then we could
achieve that by doing it in terms of u and v but never putting v in any of the equations, but then the
derivative of x, y, z with respect to vwould be 0, so the denominator would also vanish, consistent with
the intuition before that it is not possible.

There is one more topic, and that is differentiating under the integral sign.

IfI(c) = f:f(c, x)dx thenI'(c) = f;fc(c, x)dx. Intuitively this makes sense: We can swap the
differentiation and integration order because the sum of the changes is the change of the sums.
However, we need to justify this. Itis true whenever f(c, x) and f.(c, x) are continuous everywhere in a
closed rectangle with x going from a to b and c in some neighbour its value. If the integralis improper
we can just take a limit: If the integral is absolutely convergent then the dominated convergence
theorem allows us to take this limit when it exists. We proved DCT in the level 6 technical results
document, and now we will show that this differentiation and integration swap is valid.

The following screenshots are from wikipedia.

Now, both of these are true from the fundamental theorem of calculus and the fact that swapping
integration bounds changes the sign.

-%(Lﬂmwn):ﬁw, E%(Aﬂmw&):—ﬂ@.

Let’s define

b
mm=/fmmm

Now, fis continuous on a closed rectangle, and therefore by a theorem in the level 6 technical results
document it is uniformly continuous in that rectangle. Thus, there exists a Aa such that

|f($,{1+ﬂﬂ£) _f[f'f}a” <€

always, for any arbitrary €.

Also,



Ap = p(a+ Aa) — p(a)

_ [Lbf{g;?ajuaa)dm - /: f(z, @) dz

= /b (flz,a+ Aa) — f(z,a)) dz

(e

< e(b— a).

Which implies that ¢ is continuous: The output can be made arbitrary close by making the inputs
sufficiently close. Also, by continuity of f,, there is a Aa with

‘f(:c,a—kAa)—f(a:,a) B of .

Aa Oa

As by the mean value theorem the first term of the above screenshotis f,(x, a + d) with d<Aa, and we
pick Aa small enough such that the difference is within € for any d<Aa. Now, this implies that

dx + R,

A(P b f(:::,a+/_\a) —f(:r:,a) b 8f(w,a)
Ezfu A dm_fu P)

(87

where
b
|R| < f edr =e(b—a).

The reason for the last term is from the € bound in the screenshot above. As € gets smaller, Aa
approaches 0, so we have that

. Ap  dy b5
J;‘%m—@—f; 7 | (@) dz

Since R gets small so the two integrals in the screenshot two above that differ by R must approach
eachother.

Another theorem says what happens if the integration bounds depend on c:

IfI(c) = f((cc))f(x, c)dxthenlI'(c) = f;((cc))fc(x, c)dx + f(b, c)% - f(a,c) %. Now we need the same

continuity conditions as before, and also suppose we have the same continuity conditions in an
interval around [a,b] since a and b are changing.

Proof:

Let

b
o(0) = [ f(z,a)d,

a

with a and b depending on a. Then



Ap = pla+ Aa) — ¢(a)

b+Ab b
= / flz,a + Aa) de —f f(z, o) dzx

a+Aa
b+Ab

a b b
:/a_mf(w,a+ﬂn)dx+/a f(x,a+Aa)dx+£ f(ﬂf,a-l-Aa}da:—[u flz,a)dz

at+da b b+Ab
f flz,a + Ac) dz 4 f [f(z, e + Aa) — f(z,a)]dz [ flz, o+ Aa) d.
a b

i

In the first and last of the integrals above, we can apply the mean value theorem which essentially
says that f:f(x)dx = (b —a)f (&) with a < & < b (This is just the standard MVT applied to an

antiderivative of f). This gives

b
Ap = —Aaf(&,a+ Aa) + f [flz,a + Aa) — f(x, )] dx + Abf(&2, 0 + Aa).

]

Now, for the same mean value theorem argument as In the above proof, dividing everything by Aa and
taking a limit does give this for the middle integral:

/ = f(z,0) da

Since &; = a, and fis continuous, the first term approaches — 2—Zf(a, a + Aa), which approaches

- j—zf(a, a), by continuity and the definition of the derivative. Similarly for the last term. So done.
Example:

Suppose we want to evaluate fooo x"e *dx. This can be done with integration by parts and induction,

but here is a different method. By a simple substitution,

fooo e Mdx = %for A > 0. This is continuous with A4 in the vicinity of 1 (which is what we will eventually

care about), and continuous in x everywhere, and we can just take a limit to infinity.

Differentiating with respect to A n times gives fooo(—x)”e‘lxdx = (1" fooo x™e~**dx. On the other
() (-D)"

“ni1 - 1herefore,

hand, by the power rule, differentiating % ntimes gives

(=) fooox e~ gy = WOCDT . Taking A = 1 and cancelling n! Gives that fooo x"e *dx = n!

An+1
Lecture 6:

This lecture was mostly a review from A level of techniques for solving differential equations. However,
we do have some definitions:

The order of a differential equation is the highest order derivative that appears, so you may hear about
“first order” or “second order” differential equations for example.

An ordinary differential equation is a differential equation with only an independent (usually x or t)
and a dependent variable (usually y).



A linear differential equation is a differential equation where all of the terms arey or one of its
derivatives multiplied by a function of x (assumingy is the dependent variable and x is the
independent variable). It has constant coefficients if all these “functions of x” are constant values,
and these can be solved using the auxillary equation, as explained in levels 5 and 6.

A homogenous differential equation is a differential equation with no terms depending only on x.

The lecture also reviews some numerical methods that we met in further maths (level 5) for
approximately solving differential equations.

We also have some obvious power series facts in which the technical details about convergence were
justified in previous levels. Suppose y = Yo, a,x™, then inside the radius of convergence,

dy _ voo n—-1
- dx Zn:lnanx
dy  voo n
- xa - Zn:l nanx

- Xy =Yoo anxn+1 = Ym=1am-1X™"
Before we solve differential equations, we need to be careful: We should only solve them on a domain

in which they are defined: For example Z—z = %should only be solved on an interval not including x=0

so that everything is defined, otherwise something like y=|x| satisfies the equation everywhere that the
stuff is defined. If we add implied constraints like that the solutions have to be infinitely differentiable
everywhere then we get better behavior.

Lecture 7:

In simple cases we can find solutions using a series in terms of a,. For example, if 5y’-3y=0 then 5xy’-
3xy=0so

oo

5 Z na,x" — Z 3,1 x™ =0
m=1

n=1 =

So we can equate coefficients to find a4, a,, as, ... in terms of a,.

In fact, we can write a recurrence relation: 5na,, = 3a,_4

_ 3
)

a, = (%) (%) Ap_p = (%) (5(n3_1)) (ﬁ) a,_3 and we can keep going until we get

a, a,_, for all n so we can apply this repeatedly:

n

RO

ol

n

3x

Which means the power series agrees with the taylor series for age s , which we could also derive
using the integrating factor.

After this we do more review from A level, such as this cool real world example:
We have 3 radioactive isotopes: A decays to B which decays to C.
Attime t, the amount of each isotope is a(t), b(t), c(t).

We have that



da
E = —kaa

Because a decays proportionally to how much A is left.

k

Therefore a = age et which we know from A level.

For b, we have to take into account the fact that it is increasing from a’s decay and decreasing from its
own decay.

db

dt
This is an equation which we can easily solve using an integrating factor, even though the lecturer
solves it by guessing for reasons | don’t understand.

=kya — k,b = kgage *at — k,b

We can eventually get that if k, # k; then the unique solution for b satisfying b=0 when t=0 is
kaao

K . . .
—%e"‘bt + ne"‘at. We can find the solution for ¢ by finding what we would need to add to a
b~ Rra b~ Ra

andbtogeta, =a+b +c.

Given that this problem came from radioactive decay, it makes sense what the graph of this looks like:
a decays exponentially, b starts by increasing but itself decays so it peaks at some point then decays,
and cis what is left so itincreases over time.

0.8
0.6
0.4

0.2

Red =A, Blue =B, Green=C
We can use this idea to find how old something is by dating.

Sometimes boundary/initial conditions may not be abouty being a constant at some constant x. For
example, forthe DE xy’ + (1 — x)y = 1, the general solutionisy = —i + iex, and the boundary

consition that merely states that y is finite for all x determines that c=1. This is finite by a limit we had
to solve by elementary means in the level 4 existence of e proof.

Going back to the radioactivity example in the case k, = k;,, solving it using an integrating factor will
eventually give that b = k ate ¥t is the solution that satisfies that b=0 when t=0.

Lecture 8:

Sometimes equations are separable (meaning you can apply separation of variables from A level, ie it

can be written as A @) even if they don’t look that way. Example:

dx g



d
(x2y — 3y)d—z — 2xy? = 4x

d
Yt = 3)2 = 2x(2 + )

y 2x

dy =
2+ y? Y x2—3dx

So we can integrate both sides which gives us solutions in terms of logs, we eventually get
y+2=C((x* =3)%)

Definition:

An ODE of the form Q(x, y) Z—Z + P(x,y) = 0is exact if there exists an f(x, y) with
o P(x,y) + Q(x,y)Z—Zand Z—f] = P(x,y)Z—; + Q(x,v). Both are equivalent to [ df = [ Pdx + [ Qdy

ox -

by previous definitions. If an ODE is exact then the equation is saying df=0 so f=constant is the general
solution. We don’t know yet how to determine if an equation is exact but we will talk about how to do
that and how to apply this.

If an equation is exact, we can use the multivariate chain rule and equate coefficients to get:

fx =P(x,y)and f, = Q(x,y).

If P, and Q, are continuous, then they are equal to eachother, since f,,, = f, if they are continuous.
This is a necessary but not sufficient condition for exactness.

Definition: Adomain D is simply connected if it has no holes, ie it is path connected and any closed
curve in D can be continuously shrunk to a point in D without leaving D.

Theorem (Poincare lemma): If P, = Q, are continuous in a simply connected open domain, then
Pdx + Qdy is an exact differential of a single valued function f (x, y). | will give an idea of why it is true
then give a proof.

Idea of why the Poincare lemma is true:

We can try to construct a function f by starting somewhere and filling it in based on the tiny changes in
x andy. If the domain has holes, it could be that f goes up a spiral staircase and is thus multi-valued
(kind of like the complex logarithm looping around the point 0 where it is not defined). But, if there are
no holes, then the integral of df around a loop is 0 since it can be continuously deformed into a point
where the integral is clearly 0 by simply connectedness. Because the integral of df is O f is single-
valued at every point. However, we need to demonstrate that the integral does not change as we
deform the path - this is not complete and just an intuition.

Proof of Poincare lemma:

Consider a rectangle inside a simply connected open domain. Define (going anticlockwise) its bottom
as (a,c)to(b, c),itsrightas (b, c)to (b, d), its top as (b, d) to (a, d) and its left as (a, d) to (a, ¢). Let’s try
to integrate Pdx + Qdy along those sides of the rectangle.

What we end up with is
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This can be written as

d

b
L[P(E:ﬂ) — P(z,d)] fim+f[Q[b;y} — Q(a,y)] dy

e

By the fundamental theorem of calculus, we have the following
d b
P(e,0) - Ple,d) =~ [ Ble)dy, Q0.9 - Q) = [ Qulen)de.

And therefore we have the following integral, which collapses to zero because P, = Qy

ﬂ?j@:(%y] — Py(z,y)] dydz

Now suppose we have a region that has a closed loop as the boundary and can be tiled by a bunch of
these rectangles, so a possibly more complicated region but with all right angles and edges aligned to
the axes. Then what happens is if we integrate along the boundary of this region, we get 0. The proofis
that we can sum the integrals of the rectangles, which are all 0 from earlier, and what happens is all
non-boundary edges in the integral vanish since an edge on the right of one rectangle is either part of
the boundary or is connected to a left edge of another rectangle, and the integral along those opposite
edges cancel since they are going in the opposite direction.

Now we will pick points on our path such that we can take those points to be opposite corners of a
bunch of rectangles, and such that these rectangles are all completely inside our SCD which we will
call D. This is fine since our path cannot touch the boundary as D is open by assumption. Fix (xq, ¥o) in
our domain D. Then itis inside one of our rectangles, and so is any (x, y) in D. Define F to be the
integral of P(x,y)dx + Q(x, y)dy from (x,, ¥o) to (x,y) by first moving in a straight line from the
starting point to the boundary of its rectangle, along more of the rectangles, until the rectangle of the
end point, in a straight line to the end point. Suppose without loss of generality at each rectangle we
go horizontally and then vertically. This is well defined since if we do it differently, the difference is 0 by
the rectangular-domain property from earlier. We will show that F makes an exact differential as
required.



This image shows what | am doing with rectangles: Since the black loop is not on the boundary since
the domainis open, | just have to make them sufficiently small.

Lets compute F,: By continuity of Q,,, we may apply differentiation under the integral sign, which by
the way is called Feynman'’s trick. To find F,, we will call (x4, y;) the first point we go to in our final

';;1)) P(x,y)dx + Q(x,y)dy + f;l P(s,y,)ds + f;’l Q(x, t)dt where the first

term is on any axis aligned staircase like path.

rectangle, sothat F = f((;;l

E, = f;l P.(s,y0)ds + f;l Q.(x, t)dt = P(x,y,) + f;l Q. (x, t)dt by feynman’s trick and the

fundamental theorem of calculus. Also by FTC,

P(x,y) — P(x,y,) = f;; P, (x, t)dt = f;; Qx(x, t)dt since P, = Q,. Therefore,

y
F, = P(x,70) + f 0.6, )t + P(x,) — P(x,70) = P(x,7)
Y1

And we can prove similarly that F, = Q(x, y).

Thus fis a function whose differential is the exact differential Pdx+Qdy as required. We used simply-
connected-ness because when we prove that f is well defined, we use the “rectangle lemma”, which
has to hold even if the axis alighed path which integrates to 0 encloses the loop, as we asserted that
this path integrates to 0, hopefully this makes sense.

Example:
dy
6 —x)—+2x -3y =0
Yy —x) -+ 2x =3y
6y(y —x)dy + (2x —3y?)dx =0
Now this is exact by the Poincare lemma. This is because P, = @, = —6y and this is defined

everywhere and thus on any SCD.
Lets try to solve for P: f, = 2x — 3y?so f = x? — 3xy? + h(y)

The pointis that h vanishes when we differentiate wrt x so it can be any function of y, kind of like the
generalized constant of integration.

ForQ: f, = 6y? — 6xy so f = 2y> — 3xy* + h(x)

Thus if we set h(x) = x2 and h(y) = 2y3 we have an exact differential. This is no longer dependent on
the Poincare lemma. So the solution is given by

2y3 —3xy?+x?=C

Sometimes solutions to DEs are impossible to write in closed form, but we can still analyse the
behavior of solutions with graphical methods. Each initial condition generates a distinct solution.

d . - . .
If | have % = f(x,y) what | can do is draw a derivative vector field and try to sketch the solution curves

without solving the equation by following the vector field. Here is what | mean:

For example: Z—z = x(1 — y?) can be solved, but | will do this example to show the method.



Here is the slope field from wolfram alpha, this is the vector field | mean: We find dy/dx at each point
and sketch something like this.

Now here is my attempt to follow the lines to get solution curves. An alternative way is to draw the
d . . . . .
contours ﬁ = c and try to make a line to connect it appropriately. These contours are called isoclines.

. d . . .
In particular, look for when d—z = (0 and try to solve for y to see if you can identify any constant

solutions. In this particular equation we can find this way that y = +1 are solutions.

As you can see, the solution y=1 is stable because the solutions around it are “attracted” to it. The
solution y=-1 is unstable because the solutions around it are “repelled” from it. Since the derivative is
positive if and only if -1<y<1, this implies that all solutions will approach either 1 or negative infinity as
x increases, which is why we see this behavior. It’s kind of like how if you put a pendulum vertically it

may stay stable but if you push it even a little bit it will fall.

Lecture 9:

We will do an example of how we can sketch isoclines for the equation above. We want D (The

o . D
derivative) to be a constant, and D = x(1 — y?) soitis constantwhen y? = 1 — —. Here are what the



isoclines look like: We could sketch the graph by trying to fit a curve to be at the right slope at the
relevant isoclines.
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Definition: A fixed point is a solution y=c. It is stable if when y deviates from c by a sufficiently small
amount it converges back to ¢ as x increases. An unstable fixed pointis a fixed point that is not stable.

We will now show some methods of determining whether a fixed point is stable. This is called

Perturbation analysis. Suppose y=c is a fixed point of Z—Z = f(x,y), then sety=c+e. Then
de _
dx
first term is zero because of the setup. Therefore if f,, (x, c) is positive, the solution will be unstable

f(x,c + ¢). Iffis differentiable at constant x, we can write % = f(x,c) + efy(x,c) + o(e). The

since € will grow, and otherwise the solution is stable since € will shrink. If f, (x,c) is zero we need to
add more terms to determine stability. The series will look like f(x, c) + szfyy(x, c¢) so we would need
to consider the sign of £f,,, (x, ¢) to see if epsilon gets bigger or smaller.

Lets do this on the example Z—z = x(1 — y?). Suppose ¢ = 1, then % =f(x, 1) +¢f,(x,1) + 0o(e)

= g(—2xy) + o(¢&). Therefore as x grows, € grows negatively proportional to itself so it goes to 0. At c=-1
we get that g = g(—2xy) + o(&) which as x grows is now proportional to itself so € will get larger so the

solution is unstable.

Definition: An autonomous differential equation is one which does not depend on x (or the
independent variable). For first order ones, we can give a formula for the solution but not always a
closed form:

1
F&

1

dy,sox+c=ff(y)

IfZ—z = f(y)then [dx = [

general.

dy. However, this is hard to solve in closed form in

Example: ConsiderZ—z = y? so f = y2. This has a solution when y = 0. Lets see if this is stable or
unstable. Lets sety = ¢, then % =¢(f,(x,0)) + €2(f,,(x, 0)) + 0(£%). Since f does not depend on x,
we can write % =¢£(0) + £2(2) + 0(e?) = 5(25 + o(e)). This means the solution is stable if 2 + o(¢)

is negative, which means it is stable if we perturb y down but unstable if we perturb y up.

Example (in Chemistry):



Suppose we have a reaction A + B -> C + D where at the start we have a,, by of Aand B and 0 of C and
D. Suppose a(t), b(t), c(t) and d(t) are the amount of each chemical we have at any given time. Assume
the system is modelled by:

a(t) + c(t) = agand b(t) + c(t) = bgand c(t) = d(t) and d(ci(tt) = Aa(t)b(t). These are realistic for

some real world reasons but that is irrelevant and | don’t really understand it anyway. Rearranging we

dc(t)
dt

stability. These ideas could therefore be useful in the context of chemistry.

get—— = A(ay — c(t))(by — c(t)). This is an autonomous system and next lecture we will analyze its

Lecture 10:

Let’s assume that ay, < by without loss of generality. c = by and ¢ = a, are constant solutions. We
need to calculate %, whichis A(2¢c — ay — by). At c = a, this equals A(ay, — by), and at ¢ = b this
equals A(by — a). Recall that the stability depends on the sign of %, which means thatc = aqyisa

stable fixed point and ¢ = b, is unstable. However, ¢ = b, is not possible for physical reasons (there
would be negative amount of a). For autonomous systems like this, we can quickly see by plotting f
against ¢ and looking at its slope at the roots whether each solution is stable. (Screenshots from other
cambridge notes)

We can also draw a 1D phase portrait to plot the trajectory of ¢ with time. We can use open and closed

¢
A

circles to represent stable and unstable fixed points.

> o —< O > > C
ao bO

Example (logistic equation, this is really cool):

Suppose we have a population of size y(t) and a birth rate equal to ay and a death rate equal to by +

d . .
cy?.Seta — b = x, so now we have d—i =xy(1— %) where Y is a constant. This is separable and not

that hard to solve, but we will not do that — instead we will analyze its behavior.
The fixed points are y=0 and y=Y. The graph of y’ against y will be an upside down parabola through 0

and y - Thus the fixed points are 0 and Y. This can be interpreted - If the population is 0 and you add a
slight amount to the population it will continue to grow, and it will approach Y.



Now we will do this as a discrete equation (this is another term for a recurrence relation). This is
similar to what we did back in that level 4 video about cobweb diagrams.

A fixed point of a first order discrete equation (ie an equation of the form x,,; = f(x,)) is defined as a
value of x,, with f(x,,) = x,,. This means we will stay at x,, forever if we reach it. Recall from level 4 that
the point is stable if the derivative of f is strictly between -1 and 1 in the vicinity of the point, and
unstable if the derivative of f is strictly greater than 1 or less than -1 in the vicinity of the point.

Note that if the derivative is between 0 and 1 we will move monotonically towards the fixed point, and
ifitis between 0 and -1 we will oscillate around the fixed point with decreasing magnitude.

Now we will analyze the equation x,,,; = rx,(1 — x,): This is the discrete logistic equation and it is
related to the differential version, but this is where things get really interesting. In fact, my example
from level 4 of chaotic behavior was one of these equations with r carefully chosen. We will analyze
this in the case that x,, is positive.

Now our f(x,) = rx,(1 — x,). We will sketch this. Since the maximum of rx,, (1 — x,,) turns out to be
r/4 by simple calculus, we will only consider r between 0 and 4 so that x stays positive.

Here is x with the family of parabolas:

Solving for fixed ponits gives x,, = 0,1 — % We see that if r<1, we will not have any positive fixed points,

and we will have a stable fixed point at 0 by the derivative criterion, so if this is a population then
everyone would die.

Again by simple calculus, the derivative of fis 2-r at the non-zero fixed point, and thus when 1<r<3 the
fixed point is stable. The fascinating behavior happens when 3<r<4. The recurrence relation behaves
chaotically and unpredictably in this case.

Lecture 11:

The lecture is mostly a review of 2" order ODE’s with constant coefficients. We know how to solve
these from A level. The lecturer spends the entire lecture giving a much harder derivation than the one
in level 6, and therefore this section of the notes will be very short.

Definition: A differential operator is something like, for example (aD? + bD + c¢) defined by

(aD? 4+ bD + ¢)y = ay” + by’ + c. Itis linearifitis like a polynomialin D as in the previous example,
or equivalently for an operator D, D(ax+by)=aDx+bDy - It is easy to check that polynomial operators
satisfy this relation. What | did implicitly in level 6 was factor this polynomial to derive the solution to
2" order ODE’s with constant coefficients, but | did this without bringing up all this operator jargon.



Definition: Solutions to a DE are linearly independent if they are not linearly dependent, linearly
dependent means one of the solutions can be written as a sum of constant multiples of the others.

Lecture 12:

We note that the solutionto ay’’ + by’ + c in the repeated roots case seems different from the
solution in the other cases but it can be thought of as the limit of nearby cases.

For example, if the equationis y'' — 4y’ + (4 — £2)y = 0 then the roots of the characteristic equation
are 2 + €. We will show another method and then go back to this limiting case.

Theorem: Afirst order linear homogenous ODE with leading coefficient 1 and the other coefficient
continuous has 1 linearly independent solution

Proof: Integrating factor

Suppose we have an equation of the form y"' + p(x)y’ + q(x)y = 0 and we have a non-zero solution
y1(x). Then we can try a substitution y(x) = V(x)y;(x). By the productrule, y' = V'y; + Vy,’, and
y" =V"y, +2V'y; + Vy;'. Therefore, our equation becomes

V'y, +2V'y; + Vy! + p(V'y; + Vy1) + q(Vy;) = 0. But our assumption was

yi + p(x)y; + q(x)y; = 0since y, was a solution. Therefore we can get rid of that and just solve
V'y, +2V'y; + p(V'y,) = 0. Ifwe letU = V', we have U'y, + U(2y; + Py;) = 0. The idea is this

2y

equation can now be solved for U. We have % = — y—ll — p so by integrating both sides,
1

In(U) = =21In(y,) — [ p(x)dx. Finally, we have that U = %e‘fp(")dx where A is some constant. We
1

could now integrate U to find V and then get the general solution to the original equation from finding a
single solution. This method is called reduction of order.

Note that | almost want to say that from this we prove directly that such an equation has exactly two
lineraly independent solutions. The above method gives a proof that this fact holds any time thereis a
solution that is never zero that we can use as our y;. | will now prove the full statement, but first we
need to introduce a new analysis concept.

Theorem: A second order linear homogenous ODE with leading coefficient 1 and the other
coefficients continuous has 2 linearly independent solutions. Let the equation be of the form
y" + p(x)y + q(x) = 0 with p and g continuous on some interval.

Proof: Since the equation is linear, we can prove uniqueness of the solution for any (y,, ¥9) = (a, b) by
proving that the difference between any such solutions is 0, meaning equivalently if we set (v, vgy) =
(0,0) then the solution must be identically 0.

Set u(x) = exp (f:op(t)dt). Now lets evaluate (uy') = uy" + u'y’

= exp (f;o p(t)dt) y" + p(x)exp (f:o p(t)dt) y' = —q(x)u(x)y(x) where the last equality is by the
differential equation.

Integrating (uy')’ = —uqy from x, to x gives uy’
ok for the lower limit on the left hand side.

— f;i) u(t)q(t)y(t)dt, where since y'(xy) = 0 we’re

Now we have that y'(s) = — ﬁ f;o u(t)q(t)y(t)dt, so we can integrate again to get:



pe 1 s
() = — f ) f w(©qOy©dt ds.

Now since q(t) is continuous on [x,, x] it is bounded there and by extension so is u(t) and u(t)™!
since u(t) is never 0 as it is an exponential. Therefore we can use the triangle inequality for integrals
and the fact that there is such a bound to get:

y() < Cfxxfw(t)utds

Now define aregion R := {(t,s): x, <t < s < x}. Thisis a triangular region. Since we have a non-
negative integrand, if it converges then it converges absolutely, so (cf level 6 technical results) we can
integrate over the same triangular region in another order.

[ [ wnaeas=[" ([ eias)ac= [ woie-oa

Now we have |y(x)| < C f;oly(t)l(x —t)dt.LetM(x) = sup |z(t)], then
xOStSX
R
ly(x)| < CM(x) f;o(x —t)dt = CM(x) @ Let s be the value such that y attains its maximum
absolute value between x, and x. We need to justify that we can do this: We will show after this thaty
— 2 _ 2
is bounded on any interval in order to justify this. Then M(x) = |y(s)| < CM(s) (s+°) < CM(x)%

since that last function is increasing in x since M is by definition and the square part clearly is.
Therefore

— 2 _ 2
M(x) < CM(x)@ soM (1 — C@) < 0. Since this holds for any x, it holds for x = x, + h, but

the right hand side is M times a negative thing, so M must be 0, so our function must be 0 on the
x_hxo times to get the desired result, and since x was

arbitrary this is true everywhere, and its true before x, by just flipping everything around. So done.

interval [xg, xo + h]. We can repeat this argument

C(x—x¢)2

. 2 . _Ch? Ch?
Now pick h < \/;, meaning — < 1. Then forevery t € [xg, Xo + h], —~ < >

Theorem: Any solution on a closed bounded interval to a differential equation with continuous

coefficients y™ + p,_; (x)y@™@ D + -+ p, (%)Y + po(x)y = 0is bounded

y(x)
Proof: SetY(x) = Y ('x) . Then we have Y'(x) = A(x)Y (x) where A is the n*n matrix
YD)
0 1 0 0
0 0 1 0
0 0 0 1
—Po —P1 —P2 - “Pn-a

You can convince yourself that the above equality is true by checking each component.



Now pick an interval J=[A,B]. Then the operator norm (Which we defined in one of the first lectures
when we were doing multivariable calculus) is bounded on J since all the entries are bounded. Let M
be the supremum of the operator norm of Ain J.

We can integrate both sides of Y'(x) = A(x)Y(x) from xp,toxtogetY(x) = Y(x,) + f;}A(t)Y(t)dt. By
the triangle inequality and the operator norm inequality that we derived in the earlier lecture where we
introduced operator norms, we must have that |Y (x)| < |Y(xy)| + f;)IA(t)llY(t)Idt

< Y (o)l + M [7 ¥ (0)]dt.

Now set v(x) = [Y(xo)| + M f;olY(t)Idt, then we have shown that |[Y(x)| < v(x).v'(x) = M|y(x)| so
therefore v'(x) < Mv(x) since |Y(x)| < v(x). This certainly looks promising since it seems like v can
be bounded by an exponential: Lets make this precise. Let w(x) = v(x)e ™%, then

w'(x) = e ™*(v'(x) — Mv(x)) which means w is decreasing by v'(x) < Mv(x). Therefore since
v(x)e ™% is decreasing, v(x) < v(xy)eM* %) Therefore since |V (x)| < v(x),

[Y (%) < v(xg)eM*%0) = |Y(x,)|eM*~*0), Last equality from how v was defined. Therefore on our
interval [a,b], Y is bounded by |Y (x)| < |Y (x)]e™?~9 (since we can do the same argument
backwards).

But now, since Y is bounded and its components are y, y', y", y'”, ..., none of these components can
be larger than the absolute value of Y. In particulary. Soy is bounded. So done.

For an n’th order linear ODE, y™ (x) is determined by all the lower derivatives of y from how we’ve
defined the equations. Differentiating the entire ODE determines all higher derivatives. In fact, if the
first n-1 derivatives of y are specified at a point x, then we can get a taylor series fory about x;. At
y(x)
y'(x)
some fixed x, the vector Y (x) = y"'(x) defines a pointin what is called phase space. We will

y "D ()
use capital Y to denote this vector and lowercase y to denote a function y(x). As x varies, we trace out
a trajectory in phase space.

Example, if y" + 4y = 0, and we have a solution y; (x) = cos (2x), then the vector Y; (x) is

<—C205511(12()262c)> If y,(x) = sin (2x), then Y, (x) = (2?:5(%;2)).

If we ploty’ againsty, then our vectors as x varies trace out an ellipse.

Now suppose we have a set of solutions {y;(x)} which are linearly dependent for all x, then it follows
that the vectors {Y;(x)} are linearly dependent for all x.

Definition (Wronskian): Suppose we have n solutions to an ODE. Then we define

o _ Vi Y2 e n
W (x) = det <Y1 Y, . Yn> = det y:l J’:z y? . If the solutions are linearly
: : : 1(n—1) yz(n—l) yﬁn—l)

dependent, W(x)=0 for all x. Otherwise, the solutions are linearly independent. However, it is not
necessarily true that if W(x)=0 for all x then the solutions are linearly dependent.



cos(2x) sin (2x) ) _

Example: Forthe y” + 4y = 0 example above, W(x) = det (—Zsin(Zx) 2cos (2x)

Lecture 13:

Theorem: Given any 2 solutions of a second order linear ODE y”’+p(x)y’+q(x)y=0, if p(x) and q(x) are
continuous on an interval |, then either W(x)=0 for all x in I, or W(x) is not O forall x in I.

Proof:

Y Y2

W= |J’1' y2'

|=n%—hm’
Therefore W' = y, vy — y,y;" by the product rule (Other terms cancel). From the differential equation,
W' = —y1(py2 + qy2) + y2(py1 + ay1)
W' = —py,y; + y2py1 = —pW
SoW(x) = W(xo)e_f’fo PWau o it it is not O for some X it is not 0 for all x.

Note that sometimes people say “The solutions are linearly independent for some x iff they are linearly
independent for all x”, but be careful: Linearly independent in this sense literally means the solution
vectors evaluated at a point. Linearly independent in the globgal sense means solutions forming a
basis. These notes originally had a proof that 2" order linear ODE’s had 2 linearly independent
solutions which interchanged these two definitions and was therefore flawed.

We need continuity because W' must be integrable and thus y;’ and y;" being integrable gurantees
this. Continuity gurantees that y;' = —p(y;) — q(y;) is continuous and thus integrable, and for p to be
integrable since we integrate it in the above proof, in which the integral should be defined to ensure its
exponential is never zero.

Corollary: if p=0, W s constant, and in fact we can find it without solving the ODE.

* 1du) = Sfor

X

Example: In Bessel’s equation x2y”" + xy' + (x2 —n?)y = 0, W(x) = W(x,) exp (— fx();
som C.

Since we know that y;y; — Y,y = W(xo)e‘fxop(u)du

d 1 - . o .
So = (%) = ?W(xo)e fro PODAU by the quotient rule, and this is the same result as from earlier to get
1 1

a second solution given a first solution to a differential equation.

We can also solve equidimensional equations. These are equations of the form axy’ + by = f(x) or
ax?y" + bxy' + ¢y = f(x). These equations can be turned into a constant coefficients version using
the substitution z=Iln(x).

dg(kx) dy

dx " dx kg'(kx) by the chain

If g(x) is a solution to such an equation with f(x)=0, then considery =
2
rule, so xZ—z = (kx)g'(kx) and x? % = (kx)%g" (kx).So ax?y" + bxy' + cy =

a(kx)?g" (ax) + b(ax)g'(ax) + cg(ax) = 0, so the solutions scale: If g(x) is a solution then so
is g(ax).



Example: Suppose we have ax?y” + bxy' + cy = f(x) and let z=In(x). dJZ’ ZZ zz = x? since

dx d? d%xd dx d?y dx . d (d dx (d (d
— = exp(z) =y 2= 222 20V E snce—(—y) = ( y) by the chain rule.
dz dz? dz2dx dzdx?dz dx dz dx \dx

2
= ZZ—?: + (Z—z) y"" = xy' + x%y". Therefore our equation becomes a + (b — a) —toy= f(e?).

Therefore we get the characteristic equation am? + (b —a)m + ¢ = 0, SO our complementary
function is either of the form z = Ae*1? + Be*2Z or, if there are repeated roots, z = (Az + B)e**
Reversing the substitution gives y = Ax*1 + Bx*2 or, if repeated roots, y = (Aln(x) + B)xk.

Here is an example of an interesting case: If we have x?y" + xy’ + y = 0, and we do the substitution,

although | won’t go through the algebra explicitly, it turns out that we get that y = Ax’ + Bx ™%, and that
if we force y real then our solutions are Acos(In(x)) + Bsin(In(x)). As x goes to 0, In(x) goes to
negative infinity, and as this happens, the cos and sin of ln(x) starts to oscillate wildly, as shown in the
graph below. | will show a graph of cos(5ln(x)) so you can see the behavior yourself since if | put
cos(ln(x)) you can’t see the oscillations very well.

2 0 2 4 \

Image: The graph y=cos(5In(x))

Lecture 14:

Note that we can try particular solutions to a differential equation even when there is a more
complicated forcing (right hand side) term. Eg, by using common sense, our guess for the particular
solution to y’-5y’+6y=2x+exp(4x) would be Aexp(4x)+Bx+C.

Also note that if the complementary function has repeated roots AND the right hand side shares a
term, we can derive by the substitution method that we just have to multiply by x a second time.

For equidimensional equations, if there is a right hand side term of the form x™, we try a particular
integral of the form x™ in the case it does not match a C.F. term. This can be derived from the
substitution shown last lecture. If we have a degenerate case with repeated roots or the forcing term
matching a CF term, we can try multiplying by factors of log (x), since we have seen that we get
factors of x in the case of the constant coefficient equation, and the substitution z = log (x) turns an
equidimensional equation into such an equation in which we multiply by z in these degenerate cases.

Consider the general equation given by y”’+p(x)y’+q(x)y=f(x) in which we have two linearly independent
complementary functions y;, y,. We can use the solution vectors 13, Y,. Let ¥}, be the solution vector
for our particular integral and write Y, = u(x)Y; + v(x)Y,. The purpose of this method is to try to solve



for uand v as functions of x. Component-wise, we have that y,(x) = u(x)y;(x) + v(x)y,(x), and
¥p(x) = u(x)y; (x) + v(x)y,(x). We also have that y,/ (x) = uy;’ + u'y; + vy, + v'y,. Therefore

flx) =uy; +u'y; +vy) +v'y; + p(x)(uy; + vyy) + q(x)(wy; + vy,) by the original differential
equation. Since y4, y, are complementary functions, they satisfy the homogenous equation so we can
get rid of these terms and write u'y; + v'y; = f(x). However, since u(x)y; (x) + v(x)y;(x) must be
the derivative of u(x)y; (x) + v(x)y,(x), it means the missingterms are 0. Sou'y; + v'y, = 0. We can

Y1 Y2\ ( 0 ) u’ 1 ( Y2 _}’2> ( 0 ) 1 (‘Yzf(@)

now see that (" ; / = . Therefore == , =— . Now

(y1 yz) (v) f(x) (v) wi=y; y /X)) w\yf(x)
we can integrate these functions to get u and v and thus the particular integral. We get that
Yp = y2(x) f%(x)dx —y1(x) f%dx This is actually the general solution and fixing the constant
of integration gives the particular solution — Changing it just changes the solution by multiples of the
complementary function.
Lecture 15:
Example: Lets try to find a particular solution to y” + 4y = sin (2x). We have two complementary
functions: sin(2x), cos(2x). We need to find W: We found a few lectures ago that W=-2 if

in2
sm_(ZZx) dx — sin(2x) [

sin(2x)_czos(2x) dx =

y1 = sin(2x),y, = cos (2x). y, = cos(2x) [
—cos(2x) Gx — isin(4x)) — isin(Zx) cos (4x), dropping the constant since we just need 1 solution.
We can use some trig identities and remove some multiples of the complementary function and we

will get a particular solution — ixcos(Zx).

Lets consider a differential equation that is supposed to represent a physical system but that is
irrelevant since this is maths: The equation is my + by + ky = f(t). We note that if b=0, the
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complementary function is a sine or cosine wave with frequency ;\/% If b < 24/mk (to ensure the

characteristic equation has imaginary roots) then what happens is we get a sine wave that decays
over time with a lower frequency — We can see this in practice: If y'" + y = 0 we get normal sin and

cos,andif y” + y' +y = 0 our general solutionis e 2 <Asin (\/z—gx) + Bcos (\/z—gx)> We see the

frequency decrease and “damping” occur. This is because of the solutions to the characteristic
equation: As we increase the middle term the size of the imaginary parts decreases and we gain
negative real part. There are irrelevant physical interpretations to this. If we increase b even more,
then we just get exponential decay since we have no more sine terms. We note that the
disappearence of the sine terms corresponds to the frequency goingto zeroas b — 2Vmk. Ifbis
exactly 2v/mk, we have no more oscillation but the decay is not quite exponential since we have
something like xe ~?*. We note that in this case and even in the exponential decay case (since we have
two different exponential terms), we can have our function grow to start with before decaying. The
long term behavior is dominated by the term with slower decay.

But that was just the complementary function. What if we have a forcing term?

We note that since the complementary function always decays in the examples we are considering,
the long term behavior goes to a particular integral.



As an example, if the forcing term is a sine function that does not match any complementary function
terms, then the behavior goes towards that sine function. If it does match the complementary
function, the behavior goes to xsin(x) with some constants added in there. | know | said the physical
interpretationisirrelevant—and it is (I lose a brain cell every time this guy uses a physics termin the
maths lecture which has happened like 27384293 times today) - but this is what resonant frequency
and the breaking a wine glass trick and that kind of thing is about which is kinda cool | guess.

Lecture 16:

Motivation for what we will do: Consider a system that experiences a sudden force fromtime T — € to
T + &, think like striking something with a hammer so it moves suddenly, or something suddenly
hitting the ground when it falls. Now think about the limit as € = 0*. The resulting function is
something you can recall from the proof of the central limit theorem and chi squared tables: The dirac
delta “Function”. Essentially a function that is 0 almost everywhere except for 1 point (0) where it is
undefined and the integral at that pointis 1. Recall that we can interpret this as the limit of a normal
distribution with mean 0 and tinier variance, ie as it gets taller and thinner. We used this to get a pdf for
a discrete distribution, and now we will use it in this context. We could use any other similar family of
functions and take a “limit”. But this is should be thought of as a distribution and not a function: it only
makes sense when you integrate it.

Note that when this is included in a differential equation it only makes sense when we integrate it and
impose all but the two highest derivatives of y to be continuous.

Now consider the equation my + by + ky = C5(T — t): The integral of this on both sides from T — ¢ to
T+ecase > 0ismy + by + ky = C5(T — t). Then we get [my + by]"té + k fTT_Jr:ydx = C and we can

take the limitas € — 0. If we require y to be continuous, then we see that the only term that survives is

[my]%*e, and then we see that y is discontinuous.

It may happen that if the gradient y suddenly changes then the nature of the differential equation
makes some oscillation happen.

Properties:

- 6(t) = 0forallnon-zerot.
- []8()dt = 1ifa<0, b>0
- f:f(t)S(t)dt = f(0) if fis continuous at 0, a<0, b>0

f(to):a<ty<b
- f;f(t)6(t —ty)dt = 0:tg <aty>h provided f is continuous at t, since it has to
undefined if ty =a,ty =b
be near f(ty) near t, for the whole limiting idea to work. If fis not continuous the integral is
undefined.

Inageneralcase: If y"' + p(x)y’' + q(x)y = §(x), integrating both sides from —e& to ¢ insistingy, p, q
continuous gives approximately (by continuity) [y']¢¢ + [p(0)y]E, + f_gg q(0)ydx = 1. We see that as
earlier, [y']2, must be the only term that survives as € — 0, thus we see that y’ must be discontinuous.
They, p, q continuous condition ensures that p(x)y, g(x)y are bounded near 0 so the other terms
indeed vanish. And also if y is not continuous y’ will behave like a delta and who knows abouty”. So it
can be thought of as something “bouncing”.



In the higher order case, we must ensure all but the last two derivatives of y we deal with are
continuous, then the second to last one will be the discontinuous one, as above.

Example: y"" —y =348 (x — g) under conditionsy = 0 atx = 0, .

We need to solve this at either side of g We cansolvey” —y =0for0 < x < g where to satisfy the
initial condition we need y = Asinh(x). Similarly, in the other region, we must have y = Asinh(m — x).

The A’s must be equal so that y is continuous at g Now we must solve for A.

Now integrating both sides of the equation we have that for small €, we have the approximate

T

+
condition from integrating both sides that [y’]é_i ~ 3. Therefore the derivative changes by 3 when we
2

reach g Therefore we need —Acosh (g) — Acosh (g) =3,804 =— 3 n) We can see the bouncy

2cosh(5
behavior in this diagram below.

|

0 2

Image: Sketch of the solution above

Now we will define H(x) as the heaviside step function: This is basically an antiderivative of the dirac
delta function: More precisely, this is 0 for negative x, 1 for positive x, and undefined at x=0.

Lecture 17:

Heuristically, integrating smoothens a function and differentiating makes a function less smooth. By
integrating we can go from the dirac delta function to the heaviside step function and then if we

integrate that we get % (x + |x]) (dropping constant) which can be called the ramp function, and now

our function is continuous everywhere. The idea is integrating things make them be one more time
differentiable.

If we have H(x) on the right hand side of a differential equation with continuous coefficients and
impose y continuous at x=0 then by integrating the equation and doing a similar argument to last
lecture we see the discontinuity has to be iny”.

If we impose that y=0 for x<0 for the ODE y”’+py’+qy=H(x) then we have to find a solution to
y”+p(x)y’pq(x)y=1 for x>0 on condition y’, y=0 when x=0. Or more generally we can solve it in both
regions such thaty and y’ match at x=0 and conditions can be imposed to constrain the solutions.

Recall from A level further maths that we can solve equations like au,,,, + bu,,; + cu,, = f(n), and
thatin Level 6 we mentioned that we can derive the solutions using the same substitution method
that we can do to derive the solution to ODE’s.

These can actually arise if we try to approximate solutions to differential equations, ie

d’y  yO +h) +y0e —h) — 2y(x,)

dx2 '*n ~ h2

Example: The fibonacci numbersare 1, 1, 2, 3, 5, 8, 13, ... where each one is the sum of the previous 2.
We therefore have the discrete equation y,, 4> — Y41 — ¥n = 0 subjectto y,, y; = 1. The solutions to
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the characteristic equation are _T\/— so as we can show by substitution (Cf level 5, 6) the general

solutionis 4 (Hzﬁ

the value 1+2—\/§ is denoted ¢, or the golden ratio. What ends up happeningis we gety,, =

n 1—\/§ n
) + B (T) . We can solve for constants to get the values for A and B. Usually,

% (™1 — (1 — p)™*1). This is now a formula for the fibonacci numbers. A corrolary of this is that the

¢™*1 term dominates so the ratio between fibonacci numbers approaches ¢ in the limit.

In coming lectures we will prove and apply more properties of series solutions to differential
equations, which is useful when we cannot find closed form solutions. Meme about series solutions
below:

Dexter Chua notes:

We will not prove these results, but merely apply them.

Evil Dexter Chua notes:
We will not apply these results, but merely prove them.
Best of both worlds:
We will prove these results and apply them.
Image: A meme about series solutions.
Lecture 18:

We will now do some definitions that will seem arbitrary but they will make sense once we start doing
stuff.

Definition:

An ordinary point is a point where the equation y"" + p(x)y’' + q(x)y = f(x) ory’ + p(x)y = f(x) has
p, g, f analytic meaning it has a valid taylor series in an interval around the point we are considering.
We know from level 6 that this implies the existence of valid series solutions.

If we have an equation like r(x)y" + p(x)y’ + q(x)y = f(x), then the pointis ordinary provided that
when we divide through by r(x) we still have coefficients that are analytic.

If a point xy is not an ordinary point itis a singular point. Itis a regular singular point if and only if at
that point the equation can be written as (x — xo)%y" + p(x)(x — x0)y’ + q(x)y = f(x) with p, g and f
analytic. Otherwise, we have an irregular singular point.

If we have a singular point, we know what to do. We start with the initial conditions and can find our
series solution by either successively differentiating the equation or by solving an equation for the next
coefficient based on the previous two: | will show an example of this so you get what | mean.

Ify"” +e*y’ +sin(x)y = 0andy = 1+ 2x + ax? + --- and we want to find a, here is what we can do:

2a+-+e*2+ ) +sin(x)) 1+2x+--)=0



x? x3
2a+---+(1+x+7+--->(2+---)+<x—?+---)(1+2x+---) =0
Solving for the constant coefficient (since we showed we can multiply power series), we get that a
must equal -1 since itis 0 on the right hand side. Therefore y = 1 + 2x — x2 + --- valid everywhere
since the coefficients are valid everywhere.

Notice the similarity between the equidimensional equations (ie, ax?y’ + bxy’ + cy = f(x))and

regular singular points.

Example: Lets look into (1 — x2)y" — 2xy’ + 2y = 0 about x=0 . We can divide through to get
" 2x ’ 2
y - 1-x2 y+ 1-x2
(cf level 6) a series solution about x=0 must be valid for |x|<1. But we have singular pointsat x = 1

y = 0, where each of the coefficients have a valid taylor series for |[x|<1, and thus

which we want to classify. To check if 1 is a regular singular point, we know that therefore

—1)2 —_1)2 -
(x—1)2%y" — Gob) 2x 260D y =0,andthen (x — D%y — (x — 1) ==y’ + My = 0, where we

1—x2 1-x2 1+x 1+x
now see that the coefficients are analytic so we have a regular singular point.

rn ! —_ 1 —_ 2x_ _2 =
Example: (1 +vx)y"” — 2xy’ + 2y = 0. We will look at — = and ——. About x=0, we see that the

o -2x . . . .
second derivative ofﬁ; is not defined at x=0 so we do not have an ordinary point.

_ 2
153& to check if we have a regular singular point, but this does not have a well

defined third derivative about x=0. Therefore x=0 is an irregular singular point.

We need to now look at

Theorem (For those who are in my year at Cambridge, yes this is “that” theorem, which works for
higher order linear equations but we will only prove or apply it for first or second order):

The first part of the theorem says that if x = x; is an ordinary point of a linear ODE, then there are two
linearly independent power series solutions, ie solutions of the form }.7_ a,,(x — x,)™ that are
convergent in some interval around x,. We have already proven this in level 6 and have shown in
lecture 12 furthermore that it must be that every solution is of this form locally.

The second part of the theorem says that if x = x is a regular singular point and the ODE has 0 on the
right hand side, ie no forcing term, then there is at least one solution of the form Yo @, (x — xo)"*?
for some o (Real or complex: The lecturer said real but | was the one who got him to correct it!) which
is valid in an interval around x, but not necessarily valid at x. This is the same as

(x —x0)% Yom=p an(x — x0)™, where g is real or complex and a, = 0. This is called a frobenius series.
There is no gurantee that we have two linearly independent solutions of this form, but we will come
back to this point.

This partis not surprising since the regular singular points were similar to the equidimensional
equations so it makes sense that the form of the series solutions is also similar.

We would like to be able to say that if we solve for the coefficients the resulting series we get is
actually valid in an interval. Therefore we will prove the second part using a proof almost identical to
what we did for the first partin level 6.

Proof of the second part: Lets shift everything over so that x, = 0. Then we have
x2y" + p(x)xy’ + q(x)y = 0. Lets suppose y = x? ¥ a,x™. Letp = Y. b,x™,q = Y. c,x™. Then we can



differentiate y inside its radius of convergence (which we will show later is the common radius of
congergence of p and q). We can write:

y = agx? + a; x4 axt 4 -
xy' =0cagx? + (0 + Dax° + (0 + 2)ax?*% + -

x?y" =0(0 —1Dapx? + (6 + V)oay;x°*t + (0 + 2)(0 + Dax+* + -

Since we need x%y"" + p(x)xy’ + q(x)y = 0, we know that if such a series solution exists, then the x?

term must satisfy 6 (0 — 1)agx? + byoayx?® + cyay,x? = 0. But by assumption a, is not 0. We now get
the indicial equation d (o — 1)a, + byo + ¢, = 0. Therefore if such a solution exists, there are two
possible values of o. Note that at an ordinary point if we write it in that equidimensional form then we
will have by = 0 = ¢, and the roots will be 0 and 1, meaning we will

For now we will consider the larger root if they are real, or any root if they are complex conjugate pairs.

n+o

We want to solve for a,,, and we will have to solve an equation by equating the x such as the

following:

ap[(c +n)(c+n—1) + by(o +n) + ¢y] + stuf f = 0, which we can solve provided the stuff in the
brackets is not zero. This is nhot a problem since we are picking the larger root of the indicial equation
or a complex root — there won’t ever be a root bigger by an integer. However, we will return to the case
that the roots differ by an integer or are the same, as in the other cases we see that we have two
linearly independent series solutions of these forms, but that case is harder. But in this case where
the roots are not degenerate, we only need to deal with convergence issues then we will be done -
since we have assumed convergence when doing all of this manipulation of the series.

Proposition: Frobenius series actually converge inside the common radius of convergence of the
coefficients of the ODE, just like ordinary series solutions at ordinary points.

Proof: This is exactly like the level 6 proof of series solutions for the ordinary case, as we will see. We
will again assume we can differentiate power series since once we show that it converges with this
algebraic derivative we know that it converges with the true derivative.

Setup: Lets start with an equation of the form x2y" + xp(x)y’ + q(x)y = 0 where p(x) = ¥, p,x",

q(x) =Y q,x™, and lets pick any root 6 of the indicial equation. Then we will look for a solution of the
formy = x? Y, ¢, x™ with ¢, # 0. Let R be the common radius of convergence of p and g, then we want
to show that the series )’ c¢,x™ converges for every |x|<R. We know already the following:

- Q)Y = (koo qrex) Xizo cax™)

- xy =Y+ a)epx™t

- Therefore, P(x)xy’ = (Xieoix®) XS o(n + 0)cpx™9)
- x%y" =30 (n+o)(n+o—1)c,x"t°

We know from previous work (Level 6 -> Pure maths -> Power series properties for an explanation) that

n+o

it must be the case that the coefficient of x is as follows:

- xP()y" = EnzolXk=0 PrCn-r (n — k + 0)]x™*7)
- QMY = CrolXk=0 qrCn-k]x™*)

Now we can use the differential equation to equate coefficients:



n
n+o)(n+o—1)c, + Z(ppcn_p(n —-p+o)+ qpcn_p) =0
p=0

Pulling out the p=0 term,

n
nm+o)(n+0o—1)c, +c,(po(n+0) +qo) + E(ppcn_p(n —p+o)+ qpcn_p) =0
p=1

cn((n +o)(n+o—-1)+p,(n+0)+ qo) = —Z(ppcn_p(n —p+o)+ qpcn_p)
p=1

Lets define(n+o0)(n+ o0 — 1) + po(n + o) + q, to be A,, and write
Cnhn = —Ym1(PpCn—p(n — D + 0) + qyCn_p) (We will call this (*))

Here the point is that the n? stuff in A,, dominates as n gets large, and the finite values of o or p, or q,
become negligable. In particular, because of this there exists a constant C such that we have

|A,] = C(n+ 1)%ifnis large enough. We just need n large enough because these radius of
convergence arguments only care about what happens to n when it gets large, and whatever we want
can happen in the first hundred terms, or first million terms, or whatever.

Now pick any x with |x|<R and set AS) = Z§°=0|pp||x|p and A&O) = Z;°=0|qp||x|p, which are all finite
because of the fact that we are inside the common radius of convergence.

Define M,, := max lci |1x|*. Take (*) and take absolute values and multiply by |x|™ to get
<K=n

n
eallAnllxl™ = ) [ppn = p + 0) + gy [enp 121"
p=1

Now note that |[n —p + a| < |n — p| + |o| < n + |o| by the triangle inequality, so certainly (by the
triangle inequality again

n n
ealldnllzl™ < (4 101) ) [ppllenplixl™ + D [apllcnplxI"
p=1 p=1

n n
ealldnllxl™ < Gt 19D ) [pylenp I P1xIP 4+ > |ap | [enp X" 1217
p=1 p=1

Now we use the definition of M and the A’s (noting that the n-p power only goes up to n-1):
leallAnllx|™ < (n + |6DMy 1AL + My 147"
Also, by a previous inequality,
C(n+ 12 [cllx|™ < legllAnl1x]™ < (n + o)) My AL + My, AL

And dividing through gives



(n+10DA" M, ;AL
leallx|™ < My
C(n+1)2 C(n+1)2

ntim| < Lfor some constant K. This is because the left hand side times n+1
(n+1)2 n+1

as n gets large asymptotically approaches 1 and therefore, if say K=2 we eventually get a bound.

For all large enough n,

Now note that M,, — M,,_; < |c,,||x|™ since the amount M,, can increase by from M,,_; is no more than
the new term in our list of terms we are finding a maximum from, since they are all positive.

(n+loDA®Y | My,
c(n+1)2 c(n+1)2

So,M,, —My,_1 < M,_4 ( ) soM, <M,_4 (1 + %) for some finite constant B.

B B . .
Now we know that M., < M; [[r=o (1 + E) < M; [1x=0 (1 + E) Although these inequalities used

assumed n was “large enough”, we just have to have multiplication by a constant to deal with the
terms that are not large enough, so it will not affect the radius of convergence argument.

Now as before, In(M,,,,) < In(M;) + X}-,In (1 + %) By the same proof as in level 6 series
solutions with S,,, we have that M,, < Cn“ for constants c and a, and we again use the inequalities

1

1
= a\g, 1/n,a/n
i o (Mn\r (e yr _c
|x| || x|

Again, ¢'/"n%™ - 1 as n gets large (You can take logs and use L’hopital to demonstrate this). We know

from power series properties (Level 6) that the radius of convergence is given by m. But this
n
n-oco

is at least |x| for any |x|<R, because lim sup |cn|1/” < ﬁ by the inequalities above, so done.

n—->oo

For completeness, | will mention the first order differential equations case and prove the frobenius
series converges there:

xy' +p(x)y = Owith p(x) = Bioppx™, so L = — 22 =

- l;_o + (Power series), so integrating gives
In(y) = —p, In(x) + (Power series), soy = Cx~Poexp (Power series) where if the power series has
radius of convergence R so does the power series of its exponential (since the exponential converges

everywhere —yet again see level 6 power series properties). So we do have a frobenius solution.

Now we have to discuss the last case. If we have an irregular singular point, the series solution
method may fail completely so what happens is beyond this course. The regular singular point with
roots that differ by an integer is something we will deal with next time.

Example: Lets find a series solution of (1 — x2)y"” — 2xy’ + 2y = 0. For convenience, we multiply
through by x? to get (1 — x?)x2y" — 2x3y’ + 2x2?y = 0. We can substitute in the series form and its
derivatives to get:

co

(1-x2) z a,n(n —Dx™ —2 Z a,nx"*? + 2 Z a,x"*t2 =0
n=2 =

n=1 n=0

Splitting this further and re-indexing we get



o o]

Z a,n(n —1)x™ — Z Ap_,(n—2)(n—3)x™ -2 Z A (n—2)x" +2 Z Ap_x™ =
n=3 n=2

n=2 n=4

We can now read things off easily and equate coefficients: Forn = 2,
a,nn—1)—-a,_,(n—2)(n—-3) —2a,_,(n—2) +2a,_, =0

Now lets sipmlify (this is just doing stuff with quadratics)
a,nn—1)—a,_,n(n—3)=0
We can cancel n since it is hon-zero to get
ap(n—1) —a,,(n—3) =0
Note that ay and a, are free to vary before we can determine the rest of the coefficients. By how the

equation looks, we will want to determine the odd and even terms separately.

By considering odd terms, we see that all odd terms except for 1 must be 0 from the equation above.
So we have one solution of the formy = a;x.

- -5\ (n- .
The even terms, we see thata,, = (Z—_i) Ap_p = (%) (:—_i) a,_4 = --- But we have the n-3’s cancelling
and will have similar for the rest of the terms: When we get up to n, we will have a,, = —ﬁao. We
4 6
have a solution of the formy = a, (1 —x% - x? - x? — ) Recall that

2 3 4
In(1+x)=+x— x; + x? - x: + ... Sowe can check thaty = a, (1 — g(ln(l +x)—In(1 - x))) =

a (1 - ;fln (1+x)). Now we have two linearly independent solutions, so amazingly we can actually

1-x

1+x

solve the equation in closed formto gety = a;x + ag (1 - gln (E)) We see that near x=1 this

becomes undefined and we have logarithmic behavior. It turns out we can get logarithmic behavior at
regular singular points and we will see this next lecture — This happens exactly in the roots repeated or

differing by an integer case.
Lecture 19:

Example: Consider 4xy" + 2(1 — x?)y’ — xy = 0. We can multiply by x to get it in “equidimensional”

form so that 4x2y"” + 2(1 — x?)xy’ — x?y = 0, so we see that x=0 is a regular singular point.

Now lets try a solution y = x? Y7, a,x™. We get

Y o x™[An+o)(n+o—-1)+21—-x*)(n+0) —x%2]=0

We will look at the x? coefficient and try to equate it, which gives the indicial equation
ay(40(c —1)+20)=0

. . . 1
Since we assume q, is not 0, we therefore getthat g is 0 or > Because of what we saw last lecture, we

see that because these roots do not differ by an integer, there are two linearly independent series
solutions that are of this form.

Now lets find the x?*1 coefficient: We get:

a.[4(c + 1)o + 2(g + 1)] + a,x[0] = 0, as those are all the terms that contribute.



Thus a; = 0.

Now lets think about x™*? for n > 2. Since the taylor series of the coefficients of our ODE are finite, we
can get a recurrence relation that we can use to quickly find our coefficients (although I’m not sure if
there is a closed form for them). We will get that

a[dn+o)(n+o—-1)+2(1—-x>)(n+0) — x|+ a,_,[-2(n—2 + o) — 1] = 0, as we have to
contribute all products of terms that give a multiple x™*°.

We canwrite 2(n + 0)(2n + 20 — 1)a, = 2n + 20 — 3)a,,_,. (1)
Now lets plug in the possible values of g into T
Case1:0=0
(2n—-3)
an = man—z
Sowe canfindthata, = %ao, A, =—a, = %ao, etc. And all odd terms are 0.
x? 5x*

y = ag 1+E+ﬁ+"‘

And from the recurrence relation we see that the ratio between consecutive terms approaches 0,
which means it converges everywhere - this is certainly what we expect because the coefficients of
the ODE converges everywhere so the proof last lecture implies this must work!

Case2:0 = %
B (2n—2) . on—1
M onn+ D2 T n2n+ 1) 2

We will then get, and | won’t go through the calculations, but we get that
1 1 1
Y = aox?2 [1 5% Xt ]
And similarly all odd terms are 0.
We found this time two linearly independent frobenius series solutions. As we saw when we derived

this last lecture, this happens if the roots do not differ by an integer. If the roots do differ by an integer,
we will investigate further.

Lets see first what happens if the root difference is a non-zero integer. In this case, we will get one
series solution y; with the larger root that looks like (x — x¢)? Yoo @n(x — x¢)™ since we won’t have a
problem.

Now we can use reduction of order to try to derive a second solution.
Suppose y; satisfies x2y;’ + xp(x)y; + q(x)y; = 0, then we will substitute y = y,;u(x). This gives the
equation xz(ylu(x))” + xp(x)(ylu(x))’ + q(x)y,u(x) = 0. Lets expand this out:

2,01

x2yu” + 2x%yju’ + x%yfu + xp()yiu + xp()yu’ + q(x)y,u =0

But y, satisfies the ODE so



x2yu” + 2x%yu’ + xp(x)yu’ =0
Now forx # 0

2y1 x
w’ + 2y +_p( )u'

V1

=0

. . Lo2yy 2 . . .
Note that since y; is a power series, % = % + (Taylor series) where o; is the other root so it
1

p(x) _
A

integrates to 2 In(x) + (Taylor series % + (Taylor series) since p is analytic at x=0. Thus we

can integrate and use an integrating factor to get u’ = Cexp(—(20; + po) In(x) + (Taylor series)) .
Therefore, u’ = x~2%1Po(Taylor series) since the exponential of a power series is still a power series
valid on the same interval. We can use standard facts about roots of quadratics to get

01 + 0, =1—py, 010, = qy. We know now that 1 — 207 — pg = 01 + 0, — 207 = 0, — 01, which is the
root difference. Therefore u’ = x%2~%1"1(Taylor series).

We can now integrate u, and here we will assume that the root difference is an integer. We have
absolute convergence on the interval we care about and thus can apply the dominated convergence
theorem (level 6 technical results) to swap sums and integrals.

We have u = Y5, ¢, [ x™t927%11dx If g, — 0, is sometimes an integer, then since by assumption we
know g, < gy the power of x in the integral will sometimes be -1 and we will get a log term.

We deduce by reversing the substitution that for the smaller root, we will have

y2 = (x —x0)° z by (x — x0)™ + cyqIn (x — x0)
n=0
Where c is a constant that can be determined, but may be very difficult to determine as we have seen
from the derivation above.

Note that if we work with the smaller root, we will get a recurrence relation for the coefficients, and
the problem happens when we reach the larger root, as we will get 0a, = something. If this
something is zero, we can pick a; to be whatever we want and we have a second series solution.
Either way, however, we know that a solution of the above form exists with the smaller root and so we
have two linearly independent solutions (we will prove soon that this holds for frobenius type
solutions as this is not obvious). Therefore there is a log term exactly when this “something” is not
zero.

If 0, = o7 the log term will never have a constant of 0 at the front, but otherwise it might — such as in
the case where we try to write an ordinary point in equidimensional form and get roots 0 and 1, but we
clearly don’t have a logarithmic solution in the ordinary point case, so the constant must be 0. Here is
a more direct proof of this:

y'+py +qy=0=x%y" +x(xp)y’ + (x2q)y = 0, so the indicial equation is 6(6-1)+06+0=0 which
has roots 0 and 1.

Example: x2y" — xy = 0 where x=0 is a regular singular point. The roots of the indicial equation are 0
and 1. We get



Z [a,(n +0)(n+ 0 — 1)x"9 — q,x"7*1] =0

n=0

For o = 1, we can see that by equating coefficients, although | won’t go through the details, we get
Qo

thata,n(n + 1) = a,,_,. Therefore a,, = Ty

2
so we have a solution y; = agx (1 +§+ % + )

If o = 0, we cannot solve for coefficients. Therefore y, = Y7 b,x, + cy;In (x).

We have now shown that we have two linearly independent solutions of “frobenius type” regardless of
the case, however this does NOT imply uniqueness because we are not at a point of the form

y" +py’ + qy = 0 with p and g continuous. But for completeness | will prove that every solution is of
this form. But be careful - This is true with a caveat.

Proof: Since this holds on any closed interval that avoids the regular singular point, it holds in general
on the open interval (-R, 0) or (0, R) where R is the radius of convergence: For any point in these
intervals there are only 2 linearly independent solutions in a closed interval around that point, but the
frobenius solutions account for those so there can’t be any others. Since the constants in front of the
frobenius solutions that determine these solutions are the same in overlapping intervals, they are the
same on the whole open interval. The caveat is that this is true on one side of a regular singular point
thatis not an ordinary point —we can absolutely have a different solution on both sides. unless we
force the solution to work in complex numbers. For example, consider the differential equation

x%y" — 5xy’ + 9y = 0. The general solution as we would have said before is x*(4 + Bln(x)), but it
turns out that x2|x| is technially a legitimate third solution in the sense that it satisfies the ODE - only
its third derivative doesn’t exist but its first two do and really are 0 at x=0 and importantly, it is not of
frobenius type — it is an almost-frobenius solution with different constants on each side of 0. The
reason this can happen is that the theorem about two solutions assumes continuity when we divide
through by the y”’ coefficient, which does not happen in any interval containing x=0, and also in the
derivation of the solution to equidimensional equations our substitution z=In(x) only gave us positive
number solutions if we want to force real numbers. We could use a substitution like z=ln(-x), but we
will have the same problem.

Lecture 20:

We will go back to multivariable functions, see lecture 4 if you need to remind yourself of our earlier
work on this.

Now we will assume that functions we are working with have all partial derivatives continuous so that
itis differentiable in the lecture 4 sense and we can define gradient vectors or gradient matrices.

Review of a definition from L4 (Directional derivative): If we have a function from R™ — R, then the
input can be thought of as a vector. The directional derivative is then the rate that the function
changes as we move along a certain vector, where the directional derivative with basis vectors is the
partial derivatives.

Note thatin the R™ — R case, it has a partial derivative matrix D (see lecture 4) and the directional
derivative with respect to a vector x is Dx, which in this case is the same as D.x.

We write Df as Vf, so we call this “D” vector Grad or V.



d
We can by the chain rule write df = ds. Vf where ds is the vector (d;) Now we will assume s that we

are differentiating with respect to is a unit vector.

Remark: Vfis the direction of steepest ascent of f as a point.This is because s. Vfis maximized when s
is in the same direction as Vf by dot product properties.

Rmark: |Vf| is the maximuum slope of f at a point. This is because |Vf| = |s. Vf | which is exactly the
maximum slope since S is a unit vector parallel to Vf.

Remark: if s is parallel to contours of f (curves of constant f) then % =0.

Definition: A stationary point is where Vf = 0, ie all directional derivatives are 0. In 3D we have local
maxima and local minima, or saddle points. | will show image examples:

W

Heuristically, contours are usually elliptical around such a point.

Image: Local minimum, local maxima are the obvious analog.

Image: Saddle stationary point. Heuristically, contours are usually
hyperola-like around such a point. In a contour plot, contours will cross at a saddle point and look
hyperbolic around it. As an example, this is exactly what the contours x? — y? = ¢ will do.

In 3D, The contours often cross if we are at a stationary point thatis not a local minimum or
maximum, ie a saddle point. However, this is not always the case.

Now assume further that fis a function which is analytic when we move it along any line. In 3D, or
higher dimensions, we want to consider how f varies along the line x(t) = x, + ts. This is the usual

taylor series: f = f(xo) + t(f;) + %tz(fss) + o= fxg) + t(s.Vf) +%t2(s. 7 (s. Vf)) + e

We can unpack these more:

of  ofy 1 9 o ( of of
f=f(x0)+t(sxa+8y£)+§t2< * Ox +Syay< ax+ yay)>+
°f

d d
f=f(xo)+t< af+syaf)+—t2< a—f+sy



fxx fxy
fyx fyy

the middle is a symmetric matrix called the Hessian matrix. We assume all the second partial

0%f
axdy

FE a2 L
In the term s2 # +s5 6_3/]; + 25,5y we can write itas (Sx  Sy) < > ( ) where the matrix in

derivatives are continuous so that we can be allowed to do this. We will call this matrix H.

We can write the thingy above as follows:

af af azf f 2f

Or we can write it in coordinate independent form where x is vectors:

f(xo +dx) = f(xo) +dx.Vf +%(dede) + -

Where the derivatives and hessian matrix are evaluated at x,.
Lecture 21:

The hessian matrix is a symmetric matric so if V'f is 0 then what happens is the following:

fxg +dx) = f(xg) +%(dx'TDdx’) + .

Where we diagonalize H (which we always can in this orthogonal way, see vectors and matrices). Then
x’is about a perpendicular set of axes that is not necessarily the standard one.

Then we see that if D is all positive or all negative, we have a local extremum, but if D has some
positive and some negative entries we have a saddle point.

Definition: A matrix is positive definite if all its eigenvalues are >0.

Proposition: An equivalent defintion asserts that x” Hx > 0 for all non-zero x.

Proof: xTHx = (Px)TD(Px) = (\/EPx)T(\/EPx) = |\/5Px|2 >0

Conversely, if xTHx > 0 for all x then so is (Px)TD(Px). Then if we pick x such that Px is any basis
vector, we must get something positive, so D’s entries must be all positive.

Where VD is the positive square root of everything in D.

Definition: A matrix is negative definite if x” Hx < 0 for all non-zero x. Itis clear from this definition
that this corresponds to a local maximum, and we will see shortly (same reason as above) this
corresponds to all eigenvalues being negative.

If X’ is the principal axes, then dx'"Ddx’ = A, dx}” + A, dxy® + - A,dx)’

We now see that we are have a local maximum if all the eigenvalues are negative and a local minimum
if all the eigenvalues are positive, since sufficiently close to the point the higher order terms will be
smaller than this second derivative term. If some are 0 or some are negative and others are positive,
further analysis is needed.

If a matrix is neither of these it is indefinite.

If all eigenvalues are non-zero but mixed signs we are guranteed to have a saddle point.



If some eigenvalues are zero, we need higher terms in the taylor series to classify the stationary points
— exactly as in the single variable case.

Example: f(x,y) = x? + y* has a global minimum at (x,y) = (0,0). Vf = (2x,4y?). And we have that

(2 0 _ _ (2 0
H = (0 12y2).At 0, thisisequalto H = (0 0

though we know that it is a minimum.

), so this does not tell us what kind of pointitis even

Definition: The signature of a matrix is the pattern of signs of the ordered subdeterminants of the
leading principal minors of H.

Example: For f (x4, x5, ..., X,,), we consider the sign of the determinants

fxlxl fx1x2 fx1x3

frax1 frixz
|fx1x1|» o e , fx2x1 fx2x2 fx2x3 y e
fx2x1 fx2x2
fx3x1 fx3x2 fx3x3
Theorem:
i) A matrix is positive definite if and only if the signature is +, +, +, +,...
i) A matrix is negative definite if and only if the signature is -, +, -, +,...
Proof:
i) The forward implication is not too bad: For example with vectors like x = (x4, x5, 0, ...,0),

xTHx > 0 always by the hypothesis, but then notice that this is the same as replacing x with
(x4, x2) and H with its second principal minor. We need to show that if all principal minors
have positive determinant then the matrix is positive definite. Starting with the first principal
minor, it is positive definite since itis a positive number - this is trivial and there’s not much
to show here. Note that if H; (which will denote the k’th principal minor) is positive definite
and Det(Hy,,) > 0 then Hy,,; must have an even number of negative eigenvalues. Suppose
that Hy,1 has two or more negative eigenvalues with associated eigenvectors u and v with
components u;, v;. These can be chosen to be orthogonal since they are eigenvectors of a
real symmetric matrix with distinct eigenvalues. Consider now w = vy, 1U — U, 41V Which
we will consider to be a row vector which by construction has no k+1 component. It follows
that wHy ;1 = VpyqUHp 1 — Ugy1VHg 1. SO,

WHi aW" = Wiy 1) uHjyqu” — (Wiep1) U 1) UH 10" + Wperq) W) VHgu” +
(ug+1)?vH,,,vT But the middle terms cancel since the two expressions coincide with a sign
difference as the matrix vector parts are scalar and transposes of eachother. So,

WHaW" = (Vs 1) *uHg " + (Ugy ) *VHpy V7

This is less than 0 since u and v are eigenvectors of Hy, 4 with negative eigenvalues. But
also, since w has no k+1 component, this is the same as using w; having the first k
components of w and writing wkaw,f, but this is not negative. This contradiction allows us
to conclude by induction that all principal minors are positive definite if they all have
positive determinant, and in particular so is the last one. So done.

ii) This is easy once we have part (i) of the theorem. If we take minus a negative definite matrix
it becomes positive definite as all the eigenvalues just change sign, and minus a matrix
turns the determinant of the k’th minor into the determinant of minus the k’th minor, which



by determinant properties multiplies it by (—1)¥, convertinga - + - + - + ... signature into a +
+++ + ... signature. So it is essentially just (i) applied to minus the matrix.

This theorem is very useful as we can now classify stationary points without computing the
eigenvalues whenever the determinant of the matrix is non-zero (as this is equivalent to none of the
eigenvalues being 0).

Now suppose f(x,y) has a stationary point at x, = (x,, ¥y) and coordinates are alligned with the
principal axes/eigenvectors of the hessian matrix. Now assume all the eigenvalues are all hon-zero.

Consider x = x, + (dx, dy), then f(x) = f(x,) + %dxz/ll + %dyz/lz + o(x% + y?). If we assume that
we have that the higher order terms are 0, then indeed we will have hyperbolic/elliptical contours near
a stationary point.

Now we want to say some things about the behavior of contours f(x,y)=c, in particular that they are
actually continuous near a certain point whenever f has continuous second partial derivatives, and
that they cross at a saddle point when the eigenvalues are not zero.

Preliminary definition 1: Uniform convergence - We know about how pointwise convergence works —
a sequence of function converges to a function if it converges at every value. We can say “For each
point, there is an €>0 such that for all x, our sequence of functions f(x) is eventually, after some n,
within € of the limit function”. This is different from uniform convergence in the sense that uniform
convergence requires n not to depend on x. We need the function to eventually get arbitrarily close at
all points at once, not just at each point. An example of a sequence of functions that converges
pointwise but fails this is the following:

1
fn(x): 0<x<H:1—nx
Otherwise: 0

This looks like the functions in these images:

Images: Shows
examples of this for n=1, 2, 10.

The pointis: For any point you choose, say k, after > %steps, we will get to 0. So we converge

pointwise to 0. It seems like we can pick x=0 and it will converge to 1 but we defined f(0) to be 0. We do
not converge uniformly to 0 as we never satisfy that all points get arbitrarily close to 0.

Preliminary definition 2: Lipschitz continuous — A function is lipschitz continuous if we always satisfy
that |f(x) < f(y)| < k|x — y| for some k. This intuitively means its slope is never greater than k,
however it need not be differentiable, it just can’t ever be “vertical” or approach being vertical.



Preliminary definition 3: A family of functions F is Equicontinuous at a point x;, if for every € > 0 there
exists a & > 0 such that for all functions fin F,

lxo — x| <6 =|f(xo) — flO)| <e

Lemma 1 (Stone weierstrass theorem for real functions on 2D rectangles): For any continuous real
function defined on a closed rectangle [a,b]x[c,d] we can define a sequence of Lipschitz continuous
functions that converges uniformly to our function.

Proof: Fix €>0. We will use the known fact (Level 6 technical results) that our function is uniformly
continous since it is continuous on a closed interval. So let § be such that |x —y| < § =

lf(x)—fy)] < g(we know this § exists exactly by this level 6 result). Now what we will do is split our

rectangle into rectangles with long side shorter than % (

diagonal is shorter than §). Now in this rectangle we will define our function g to coincide with f at the

actually we just need that the longest

corners and then change linearly between the corners. Now for any t in this rectangle with x, one of
the rectangle’s corners and y, its opposite corner, |[x, — t| < § = |f(x,) — f(t)| < €, and also

lvo — tl < 8 = |f(yy) — f(t)| < &. Therefore what we have is that f(x,) and f(y,) are within a band of
width 2 around f(t), so thus g(t) which is between g(x,) and g(y,) is in that band, so we must have
|g(t) — f(t)| < €. Therefore if we let €, — 0, we will get uniform convergence, and all of these
individual functions are lipschitz continuous because of how we defined them: There slope is
bounded by m , Where these slopes are finite because they are the finite change in the
function across the rectangle divided by the non-zero width of the rectangle. So done.

Lemma 2 (Arzela-Ascoli theorem specialized to real functions on 2D closed intervals): Let a sequence
of functions f,, be uniformly bounded on a closed bounded interval (For our purposes, we will prove
this for 1D or 2D intervals) and equicontinuous, then there exists a subsequence fnk that converges
uniformly to a continuous function f.

Proof: Enumerate the rational points in R2. To do this, first enumerate the rationals, ie write them out
in a list so that we have a bijection between the positive integers and the rational numbers. There are
many ways to do this, but one way is to go around like this image below where the x is the numerator
and the y is the denominator, but exclude duplicates or 0 denominators.

- a | I L | | L |
Image: Visual idea of the bijection

Then we know from level 6 that the cartesian product of two listable sets is listable, in fact by a similar
diagram to the image above.



Now we filter this enumeration so we only have the rational numbers in our interval. So we have a list
of all the rational points in our interval. Call this enumeration x4, x5, ...

Since f, has a uniform bound M, there is a sequence f;, , suchthat f, , (x;) converges pointwise by
Bolanzo-Weierstrass (Level 6 technical results). We can find a further subsequence fnz,k of this such
that fnz,k (x,) also converges. We can get an infinite chain of subsequences this way. Now we want to
form a sequence of functions f;, defined by f;, = fnk,k' By construction, this converges at every rational
point. Therefore, given any € and any rational point x;, we can find an integer N such that for all n,

m>N, we have that | f,,(xx) — fin ()| < § We’re making progress.

Since the family F is equicontinuous, there must be an open interval around x;, such that for any s and
tinthat openinterval, |f(s) — f(t)| < gfor all fin our family of functions. Doing this for all x;, gives a
covering of our interval using open sets. We will prove shortly the fundamental result that this must
admit a finite subcover since the intervalis closed, but first | will remark that you can see that if this is
true then the theorem about uniform continuity will follow since we can pick delta to be less than the
smallest thing in this subcover.

Note that Bolzano-Weierstrass applies on this interval since it is closed: Find a subsequence that
converges in the x direction by the 1D version then find a subsequence of that that converges also in
the y direction. Assume for a contradiction that we have a countably infinite covering of this intervalin
open sets Uy, U,, U3, Uy, ... with no finite sub-cover. Now ennumerate the infinite covering and
construct a sequence of points a, such that a,, is notin the first n-1 open things — possible as those do
not cover the entire interval. This has a convergent sub-sequence by bolzano-weierstrass a,, — x.
There is some U; with xin U;. But then for all sufficiently large k, a,, is in U; since it gets arbitrarily
close to xwhichis in Uj and not on the boundary. But then if n, > j, this contradicts our construction.
So we have a finite subcover Uy, U,, ..., U;. There also exists an integer K such that each of these open
sets in our subcover contains one of the first K rationals in our list, otherwise our list would be missing
every rational in that interval. Finally, for any t in our interval, there are j and k<K such thatt and x,,
belong to the same interval U;. For this choice of k, we have, by the triangle ineuqality:

/o (©) = fin (O] < 1fn(©) — fu G + fin i) = ()| + | fin (©) — fin (xic) ]
Where we pick n and m to be at least as large as N which is at least large enough such that for all k
from 1 to K we have the above inequality |f,, (x;) — fin (x)] < 2, and also from how we defined the U’s,
| (®) = fn ) 1 fn(8) — frn (x| < § always. Therefore what we have is that for any t and fixed ¢,

|fn(t) — fin(t)] < € for m and n large enough. Therefore at each t, we see that the functions value is
forced into an arbitrarily small band and thus we have pointwise convergence. We define f to be this
pointwise limit, and then |f,,(t) — f,,(t)| < €. Now letting m go to infinity and taking a pointwise limit,
|fn(t) — f(t)| < &, so our sequence of functions converges uniformly. Since € was arbitrary, we can
say that, for example, |f,,(t) — f(t)]| < % < ¢ so the inequality is strict. However, | need to show that a

uniform limit of continuous functions is continuous.

Fix e > 0. Pick N such that for alln>N, and allt |f,,(t) — f(t)| < g By continuity, for each x we have

that [x —y| < d = |fy(x) — (| < gfor some §. Then, by the triangle inequality,

lx =yl <&=1f) = fOI<If) = v+ s = A+ 1IFO) = v <e.



So done.

Lemma 3 (Peano existence theorem): Let f (x, y) be continuous on an open interval D around (xg, y,),
then the differential equation y'(x) = f(x, y) with initial condition (x,, y,) has a solution in a
neighbourhood about that point that is not necessarily unique. (It is unique under another mild
condition, in fact this is when fis lipschitz continuous, but we do not need that so we will just do the
existence theorem for now).

Proof: By replacing y with y — y, and similarly for x, we can assume that the initial condition is that we

must pass through the origin. Since D is open, define a closed rectangle R := [—xy, x1] X [—V1, 1]

contained in D. On R, the extreme value theorem implies that sup |f| < C < o0. Now by Lemma 1, pick
R

a sequence of lipschitz continuous functions f,, converging uniformly to f with sup |fxl < 2C < 00.We

define the picard itrations y;, ,: I = [—t;, t;] & Rwhere we set that t; = min (tl, ) as follows:

Vo) = 0and yj ,41(x) = fox frc (t, yk_n(t)) dt. They are well defined by induction as we have that

|yk,n+1(x)| < fox |fk (t,yk,n(t))l dt < |x| sgplfkl < t,2C <y, and thus (t, y, »(t)) is within the

domain of f. Also, by the triangle inequality for integrals,

|J’kn+1(x) ykn(x)l f|fk t ykn(t)) fx (t Yin- 1(15) kfl t, ykn(t) (t'YR,n—l(t))|dt
0

Where for each k, an L, exists by the Lipschitz condition.
Now define My ,(x) = sup |Yint1(6) = Yien(O)| < Ly fox M, n_1(t)dt. We also have that M o(x) =
te[0,x]

sup |y1(t) = yio(®)| = sup |y1(0)] < J; 1fi(t, 0)ldt < 2C|x|
te[0,x] te[0,x]

Now we will prove by induction what we have the following bound for x in | for which we just proved the
base case:

(2CLylx|™")

Mk,n(x) = ( + 1)!

Lets do the induction step. Suppose this is true, then

X X
(2CLy]x™") (lx[™1) (2CLE|x|™?)
M t) <L M,,)dt <L, | —————=dt <2CL**"' | ———=dt =
0 0

As required. Crucially, this tends to 0 as n goes to infinity for all fixed x.

< f;l |fk (t,yk,n(t))| dt < 2C|t" — t|, and thus since this

always holds, the family of functions y, ,, is equicontinuous: For & given pick § = % Therefore by

lemma 2, for each k, there is a subsequence yy , converging uniformly to a continuous function y,.

= |yk,an(x) - yk,an+1(x)| < Mk,an(x) -0

Yk,an(x) - j;)x fk (t, yk,an(t)) dt




Thus, for each fixed x, we conclude y; (x) = fox fk(t, yk(t))dt since the limit of y, , (x) must coincide

according to the inequality above, and the integral approaches fox fx (t, yk(t))dt since fis continuous
so we can pass the y limit through it and then we are bounded by 2C so we can use dominated
convergence (level 6 technical results) to pass the limit through the integral. Since each y ,, has a
uniform bound y;, so does y; (the limit of those. Now, by the triangle inequality for integrals,

lyi(0) =y DN < [ fie(t ye®)|dt < 2C|x — x|

So y; is equicontinuous so it has a subsequence k,, that converges uniformly to a continuous function
V. ykn(x) = f;cfkn (t, ykn(t)) dt, therefore (supposing x is positive since the other way around is the
same just with a sign flipped), f(jcfkn (t, ykn(t)) dt - foxf(t,y(t))dt by the dominated convergence

theorem and continuity of f. The limits on each side must coincide, so y(x) = f(ff(t, y)dt. By the

fundamental theorem of calculus, y is our solution to the differential equation so we are done at last.

Lemma 4 (Implicit function theorem in 2 dimensions): If f is continuously differentiable in a
neighbourhood of a point (x,, yo) and f, (x,y) # 0 in that neighbourhood, then there exists a unique

differentiable function g such that y, = g(x,), f(x, g(x)) = 0 in a neighbourhood of x,.

Proof: Lets try to find a g that works. By differentiating the equation f(x, g(x)) = 0 we get

fr+t9' (x)f, =0s0g'(x) = —;—;. Since fis continuously differentiable, f, and f, are continuous, and

since fy * 0, ]{—” is continuous, so by Lemma 3 such a function g exists and itis continuous and
y

differentiable.

Also, g(x) actually satisfies this equation:

+ Define h(z) := f(z, g(z)).

* By the chain rule:

K(z) = fo(z,9(2)) + f,(2,9(2)) d(z) = fo — f, = =

* So his constant. At zg, h(zo) = f(zo,90) = 0, so h(z) = 0 near zy.
(Image: Screenshot of a

proof of the claim above)

Note that for some fixed x, f(x,y) as a function of y is increasing or decreasing (and thus injective) in a
neighbourhood since f is continuously differentiable and f(x,, y) is not flatin y at our point. Therefore
we have that if two solutions are the different, f(xo, g1 (x)) = f(xo, 92 (x)) so by injectivity the two
solutions are the same, thus we have uniqueness.

Corollary: Contours around a non-stationary point are continuous. At this point, at least one of the
partial derivatives is non-zero, so we can use that one to construct a differentiable local contour as in
the theorem above.

Corollary: Contours cross near saddle points where no eigenvalues of the hessian matrix are 0, if the
second partials are all continuous.

Proof: Shift everything so the saddle pointis at (0, 0, 0) to simplify calculations.



f(x,y) = 1;x% + A,y% + o(x?, y?) where | dropped unnecessary factors of a half, 1; > 0, 1, < 0. Now
scale axes so that f(x,y) = x2 — y? + o(x?%,y?)

Remark: If contours cross then we are at a stationary point since grad is 0 with respect to both of the
principal axes at that point. The intersection between f, = 0, f,, = 0 is only the origin in the
neighbourhood since those curves have continuous contours near the origin by the implicit function
theorem (f,, = 0 is a differentiable function x(y) near 0 since f,, # 0 near 0 by continuity, for example)
and their tangent directions are perpendicular so there are no stationary points nearby. Note that we
can pick a § small enough that |f(x,y) — % (x?2 —y?)| < i(x2 + y?) whenever we are at a distance

less than 6.

. 1 1 1 1
Region A: |x| = 2|y|, then x? > 4y?, so x* — y? > 3y?, sozx2 —Eyz > Exz —<x? =—-x% and

1 1 1 5
fCy) —x? +y?| <z (x® +y%) < ‘(xz +—x2) = > x2
4 2" g
L
16

Therefore f(x,y) > %(x2 -y —|f(x,y) —%(x2 - y2)| =—x2>0.

Region B: |y| = 2|x|, symmetric argument gives f(x,y) < %yz <0

Therefore the contours cannot ever lie in these slices, but rather in the two middle wedges. Signs
alternate as we move around the circle so they must cross 0 at four points. At any of these points, the
grad is non-zero. By the implicit function theorem, if our neighbourhood is small enough that the
above contours f, = 0, fy = 0 lie in those cones, we can find continuously differentiable contours
corresponding to f = 0 since the derivative that can’t be 0 is never 0. So done.

Example: Lets find and classify the stationary points of f(x,y) = 4x3 — 12xy + y? + 10y + 6.
Vf=(12x? —12y,—12x + 2y + 10)

Stationary points: y = x? therefore —12x + 2x? + 10 = 0 so x,y = (1,1), (5,25).

fax = 24%, foy = fyx = =12, f5y = 2

Therefore the hessian matrix is

(24x —12)
—-12 2

When x=1, the signature is +-, when x=5 the signature is ++. Therefore x=1 is a saddle point and x=5 is
a local minimum. And we will have closed loops as contours near the local minimum and hyperbolic-
llike contours near the local maximum: We could find the eigenvectors and stuff in order to sketch
these.

Here is an image of the above function as well as a contour plot, which illustrates previous ideas.
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Image: The function and its contour plot with
stationary points marked, illustrating above ideas about behavior.

Lecture 22:

Example: Consider 2 dependent variables y; (x), y,(x) subjectto y; = ay; + by, + f1(x) and also

y3 = cy; +dy, + f,(x). We can write this in matrix form as (;Z) = (f:l Z) (i;) + (2) We can also

solve this using A level techniques by eliminating a dependent variable and converting it into a second
order equation. We will discuss how we can solve it using matrix methods since that scales up easier
to higher order cases. We can also start with a second order ODE y"' + ay’ + by = f and define

y1 =V¥,¥, =y, then we could write this in matrix form as @Z) = (—Ob —1a) (ﬁ) + (?) to convert it

into coupled first order ODEs.

Now we want to be able to solve a matrix equation such as Y’ = MY + F(x). We will write the solution
tothisas Y, + Y, (ie, complementary function particular solution form). We will do the boring case
where the matrix has constant coefficients.

Lets look for solutions of the form Y, = ve™* with v a constant vector. Then we want Mv = Y.!= v, so
this happens exactly when A is an eigenvalue of M. Therefore if the eigenvalues are distinct we are
guranteed to have n solutions of this form. However, we don’t know the general solution using this



method. For this course, we just have to be able to find some solutions, and not fully solve for the
general solution.

We also will need to find a particular solution by guessing.

As an example, lets find some solutions to the matrix equation Y’ = (_14 E‘;) Y + (41}) e*.The

eigenvalues of this matrix are 2 and -8. Therefore there are two complementary functions which are

C; (;L) e?* and C, (_16) e~8% (as those are the corresponding eigenvectors). Given the form of the

forcing term, we will try a particular solution of the form ue*. We will get an equation of the form

u=Mu+ (lll) (cancelling factors of e*). We can write thisas (I — M)u = (11}) where we can find u as
-1
write that a (not necessarily general, although we can prove it is in fact general if we do this with the

the matrix is invertible or else 1 would be an eigenvalue. We find that u = ( ) Therefore we can

other method) family of solutions is (i;) =(C; (Lll) e?* + (, (_16) e 8% 4 (:Lll) e”. If the matrix is not

an eigenvalue further guesses would be needed — we could try multiplying by x, for example, as that
often works in situations like this, but | don’t know for sure. We would of course get the same answer if
we do the thing where we convert it into a second order ODE and solve that.

We can consider phase portraits, similar to what we did in one dimensions earlier on. For
autonomous systems of ODEs, we can sketch trajectory in phase space, like a vector field. At non-
fixed points there will be one trajectory for each point.

Example: For Y’ = MY there is a fixed pointwhen Y = 0, orin more generality whenY € Ker(M). If M
has non-repeated eigenvalues and is invertible, we have (general: we can show this using the other

method) solutiony = Avle’llx + sze’lz". We have a few cases:

Case 1: The eigenvalues are real and have opposite signs. Lets say, for example, that .; > 0 > 1,.In
this case, we can find real eigenvectors (see vectors and matrices lecture 19). Since the trajectory
along one eigenvector will go away from the origin and the other one will go towards the origin, here is
a sketch of what the phase portrait will look like.

Image: Sketch of the phase portrait.
We call the intersection point a saddle point due to its similarity to actual saddle points.

Case 2: Eigenvalues have same sign and are real and eigenvectors are chosen to be real.



If they are both positive, everything is going away from the origin, like this sketch below. If they are

both negative it will look like the sketch but everything will go towards the origin. Therefore each of this
cases corresponds to whether the origin is stable or unstable. Note that the larger eigenvalue term will
dmoinate at long distances so we will go closer to that one, which we see in the diagram below is v,.
At short distances the opposite happens and the smaller eigenvalue dominates, which is v;. This
explains the behavior that we observe.

Image: Sketch of the phase portrait

Note that these lines are continuous in all these cases because they are a trajectory of a finite thing
and are thus differentiable.

If the eigenvalues are repeated but not 0 all of 2D space will want to go proportional to where itis so
we will just have lines going through the origin.

If the roots are not real, then we have sin and cos stuff, which means that we will go in circles, either
towards or away from the origin depending on whether the real part is positive or negative, as in the
sketch below.

If the eigenvalues are pure imaginary, we will have elliptical paths.

Image: Sketch of the phase portrait (spiral)

Lecture 23:

In the case where our phase portrait traces out an ellipse, the way to determine the trajectory is to find
the vector Y’ at any point Y in phase space.

We will now do this stuff for autonomous systems of 2 non-linear first order ODE’s. A fixed pointis a

pointwhere y; = y; = 0. If our equationis y; = f(y1,¥2),v5 = g(¥1,¥2) then we need to solve
simaltaneously f(v4,y,) = 0, g(v1,y,) = 0to find the fixed points. We can investigate the stability of
these fixed points and the behavoior around them. We will write

(y1(x), 2 (X)) = (x0 + E(x), ¥ + 1n(x)) where (xo, y,) is a fixed point. If f has a taylor series locally
along each direction, we can write that

§'(x) =y1 = fxo +§(x), y0 + n(x)) = f(x0,¥0) +E(X)fy, (X0, ¥0) + 1(xX)fy, (X0, ¥0)- We can write
this in matrix form (using f (xo, o) = 0 = g(xo, y,)) in matrix form as



()= 52)6)

n') \gy 9y,/\n

We can then use the eigenvalues to determine the behavior around the fixed point. We will go through
an example. Consider the following system of equations which has relevance to the real world:

Y1 =8y; — 2yf — 2y1y,
V2 =Y1Y2 = Y2
The fixxed points are when 8y, — 23/12 —2y1Y2 = 0,y1y, =y, =0
2y1(4=y1—y2) =0, —1) =0

Soy;, =0ory;, =4 —y,andy, = 0ory; = 1. By considering the four combinations of possibilites,
we get that (0,0), (1,3) and (4,0) are the fixed points.

foa fyz) _ (8 —4y1 =2y, 2y )

So our matrix (
9y, 9y, V2 yi—1

At (0,0), M = (g _01) so the eigenvalues are 8 and -1 with the axes as eigenvectors. What will happen
is we will go towards the fixed point in the y direction and away from it in the x direction.

_(—8 -8 . . . .
At (4,0), M = ( 0 3 ) which has eigenvalues -8 and 3. The corresponding eigenvectors are
((1)) , (_?11). The eigenvalues have different signs so we have another saddle point.

(=2 =2 . . . .
At(1,3), M = ( 3 0 ) The eigenvalues are —1 + iv/5. This tells us that close enough to the point,

the real part of the eigenvalues will be negative (since we are assuming that the derivatives of fand g
are continuous) so the trajectory of the curve will have to be inwards, as that would be the trajectory in
the case we force M constant.

At (¢,71) = (1,0) the derivative is (—2,3) so this suggests we spiral anticlockwise inwards.

We can try to put our sketches together we get this:

Which confirms that (1, 3) is the only stable fixed point.

We can study partial (not ordinary) differential equations. These are equations that involve partial
derivatives and/or involve multiple variables. This is a massive area of mathematics but we only have
time to do a few simple examples.



of af

Consider f(y, x) subject to the equation Pyl C@ = (0. We will do this by asking how f varies along a
pathy = A — cx. Then we have f(A — cx, x), and we can write % a—f + Zf 33’ by the chain rule. Buut
then by the PDE, % = 0 when Z—z = —c. Therefore f is constant along paths of the formy = A — cx. We

getthat f(A — cx, x) = g(x,) where g is any differentiable function and g(x,) = f(A4 — cxg, xo)
Rearranging, we get that f(y,x) = g(y + cx) for all a and some differentiable function g. The reason g
can be any differentiable function is because we check that £, (A) = g,(y + cx) = cg'(y + cx) and
that f,(4) = g,(y + cx) = g'(y + cx) so the PDE is satisfied. And note that the partial derivatives of f
are assumed to exist for this PDE, and this happens exactly if g is differentiable. If we fix one variable
here and vary the other variable over time and look at f as a function of that variable, it will move
smoothly along the axis at a rate c units per time unit. For this reason, the equation above is often
called the wave equation. These constant lines are called the characteristics.

Lecture 24:

We can take the wave equation and impose an initial condition, such as f(y, 0) = y? — 3. We know
that the general solutionis y? — 3 = f(y,0) = g(y). Therefore we know g. So we have that the general
solutionis f(y,x) = (y + ¢x)? —

We can now add a forcing term and get an equation like

Z—i +5 g—£ = e~ with initial condition f(y, 0) = e where we need to solve for f. The characteristics

are of the form y = A + 5x. We can use the chain rule to get that along these paths,
ax  ox dy
that f(y,0) = e = g(y) —1sog(y) =1+ e ¥ so f(y,x) = —e~ @50 _ ¢=* g5 Amust be
consistent when we set x to 0, and we rearrange to set x, + 5x = y.

U 9 4 59 — =% Therefore along these paths, f(x, + 5x,x) = g(x,) — e™* But then we know

. .92 92 . .
Now consider the equation d—x’; —c? d—y]; = 0 (second order wave equation). We can factor this and
then impose fis twice differentiable in order to let the partial derivatives commute so we can

commute these factors to then get that:

(6 d )(6 N 0 ) _0
0x Cay 0x Cay =
Note that both f(y,x) = g(y + cx) and f(y, x) = h(y — cx) with g,h twice continuously differentiable

are solutions to this equation because each one goes to 0 by one of the differential operators.

We will now prove that in fact g(y + cx) + h(y — cx) is the general solution. Now let ¢ := (y + ¢x) and

n = (y — cx). Nowa | af |x PR I, + o Ixa |¢ by the chain rule.
af 95, @ B¢ .
Slmllarly— ly = Ix |77 + Ix 3% In |- Because the terms llke 3, are just c or -c, we could go through
a a @ a
the calculations to get— - C@ = —2c & P + C@ ZC_E The wave equation now says that we have
that —4¢? aafaf = 0. We now know thataf—af =0, so =g(&),sof = h(m) + g(§), remembering from

several lectures ago that by undoing a partial derivatlve we have to add a function of the other variable
and not just a constant.



1
1+y

differentiable. Now we know from what we just did that f(y,x) = g(y + cx) + h(y — cx) so when
1
g +h(y) =

1+y?
so if we integrate this wrty we see that g(y) — h(y) = A is a constant. We can write g(y) = A + h(y)

so2g(y) —A= L : +§andthath(y)= ! 4

1+y2’ 2(1+y2) 2(1+y2) X

Now we will impose the initial conditions f(y,0) = — and f,(y,0) = 0 and f is twice continuously

by setting y=0. Also, by the single variable chain rule, f,(y,0) = cg'(y) — ch'(y),

SO we can rearrange to get that g(y) =

Now we can substitute this back into our general solution to get that f(y, x) = % [1+(yl+cx)2 + 1+(y1—cx)2]

since the A’s cancel.

Now lets sketch what this looks like if we fix x and plot f against y. Then when x=0, we just have the
1
1+y?2

simple equation f(y) = which looks like a sort of bell curve. But then as x changes we will get two

bell curves that sort of move over time, but they will be half as tall as the original one, but when x is
near 0 they will add together to give a taller bell curve. | will show images of this.

— >~ ~ |

0 0

Image: The graphs of this for varying values of x. We see now why it is the wave equation, and we see
the waves add together or interfere when x is near 0. We get even more interesting behavior if we had a
third independent variable, but that is beyond this course.

In this course we have seen how rich the behavior of these differential equations or systems can be,
it’s really interesting.



